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ABSTRACT

Je�ery-Hamel �ow is notable for the applications in the high-current
arc in plasma generators, chemical vapour deposition reactors and ex-
panding/contracting regions in industrial machines. The current study
is devoted to present the paired solutions of the classical Je�ery-Hamel
�ow from a source or sink vent within the convergent/divergent channels
in a kerosene-based nano�uid which contains copper as the nanoparti-
cle. The suitable similarity transformations are applied to obtain the
governing boundary layer equations in the form of ordinary di�erential
equations. The MATLAB solver bvp4c function solved the model e�-
ciently and gave all the numerical results as the parameters vary. The
existence of paired solutions is noticeable at a certain range of the chan-
nel angle. The increment in the nanoparticle volume fractions found to
be delaying the �ow separations.



Naganthran, K. & et al.

Keywords: Convergent/Divergent channel, Je�ery-Hamel �ow, nano-
�uid, paired solutions.

1. Introduction

The conventional Je�ery-Hamel �ow has been developed by Je�ery (1915)
and Hamel (1917). Je�ery-Hamel �ow involves the two-dimensional incom-
pressible �uid �ow between two non-parallel converging /diverging walls which
are detached by a speci�c angle. This particular �ow managed to attract the
researchers' attention because it is one of the sporadic exact solutions to the
Navier-Stokes equations. Je�ery-Hamel �ow has wide applications in chemi-
cal, mechanical and biomechanical engineering (Turkyilmazoglu (2014)). For
instance, the applications include chemical vapour deposition (CVD) reactors,
expanding/contracting sections in industrial machines, gas compressors, high-
current arc in plasma generators and pipe sections (see Turkyilmazoglu (2014),
Fitzjohn and Holstein (1990), Belevtsev et al. (2000)). Meanwhile, Rosenhead
(1940), Millsaps and Pohlhausen (1953) and Riley (1989) are those important
works which have contributed to the improvement of the classical Je�ery-Hamel
�ow, theoretically. The existence of the non-uniqueness solutions has been dis-
covered by Fraenkel and Squire (1962) in the Je�ery-Hamel �ow symmetrical
channels where the walls are marginally curved. Although some of the theories
failed in Fraenkel and Squire (1962), the presence of non-uniqueness solutions
and separation point gave a hint that the separation �ow is a possible occur-
rence in the Je�ery-Hamel �ow.

The work by Fraenkel and Squire (1962) has mainly motivated the con-
tribution of the present investigation in identifying the right non-uniqueness
solutions. The study about the nano�uid as the brilliant �uid which conquers
many practical applications in high technology industries such as microelec-
tronics, transportation, manufacturing and metrology has been initiated by
Choi and Eastman (1995). It is a base �uid with the suspension of nanometer-
sized (less than 100nm) solid particles (Das et al. (2007)). The examples of
the base �uids in a nano�uid are water, ethylene glycol, pump oil and glycerol
(Das et al. (2007)). The valuable works of Moradi et al. (2013), Petroudi et al.
(2014), Sheikholeslami et al. (2012) and Usman et al. (2018) have incorporated
nano�uid in the Je�ery-Hamel �ow. Moradi et al. (2015) solved the prob-
lem of the Je�ery-Hamel �ow and heat transfer analytically by considering
the e�ect of viscous dissipation in nano�uids containing a di�erent type of
nanoparticles (copper, alumina and titania). The di�erential transformation
method (DTM) has been used by Moradi et al. (2015) and produced unique
solutions only. Therefore, the present study attempts to extend the work of
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Moradi et al. (2015) by solving the problem numerically via the bvp4c function
in the MATLAB software and present the availability of the paired solutions.
The contribution of the present work is highly novel because previously no one
had discovered the paired solutions in the Je�ery-Hamel nano�uid �ow. The
present study is also important in revealing the �ow separation points as the
governing parameters vary.

2. Problem formulations

Examine the �ow from a source/sink at the intersection between two solid
walls that meet at an angle 2α0 in a kerosene-based nano�uid containing cop-
per (Cu) nanoparticles as it is illustrated in Figure 1, where α0 is the angle
between the two plates. The �ow is steady, incompressible and viscous. The

Figure 1: Physical con�guration of the problem.

converging/diverging channel wall does not contain the slip condition because
the channel is macro-scaled (see Freidoonimehr and Rashidi (2015)). It is as-
sumed that there are no changes in the z− direction because the �uid motion
is purely in a radial direction. Hence, the plane polar coordinates (r, θ) are
considered and the velocity components can be written as v=(u(r, θ), 0). The
e�ect of viscous dissipation is considered in the present study. Based on these
assumptions, the governing boundary layer �ow equations and heat transfer
can be formed as follows (see Moradi et al. (2015)):
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subject to the conditions at the channel centerline, θ = 0

∂u

∂θ
= 0,

∂T

∂θ
= 0, u(r, θ) = U, (5)

and the conditions at the wall of the channel, θ = α0

u(r, θ) = 0, T = Tw, (6)

where u is the velocity component in the radial direction, r is the radial direc-
tion in cylindrical polar coordinate, ρnf denotes the density of the nano�uid,
µnf is the viscosity of the nano�uid, θ signi�es the tangential direction in the
cylindrical polar coordinate, T is the temperature, αnf is the thermal di�usiv-
ity of the nano�uid, and (Cp)nf is the speci�c heat capacity of the nano�uid.
The de�nition of ρnf and µnf are given as

ρnf = (1− ϕ)ρf + ϕρs, µnf =
µf

(1− ϕ)2.5
, (7)

where ϕ symbolizes the solid volume fraction of the nano�uid, µf is the viscosity
of the base �uid (kerosene), ρf is the density of the kerosene, and ρs represents
the density of the solid particles. According to Brinkman (1952), µnf can be
estimated as µf which contains suspended dilute �ne spherical particles. Next,
the thermal di�usivity (αnf ) can be de�ned as

αnf =
knf

(ρCp)nf
, (8)

where knf is the thermal conductivity of the nano�uid and (ρCp)nf is the
heat capacity of the nano�uid. The following expressions communicates the
relations of knf and (ρCp)nf in the present problem (see Pop et al. (2016))

knf
kf

=
(ks + 2kf )− 2ϕ(kf − ks)

(ks + 2kf ) + ϕ(kf − ks)
, (ρCp)nf = (1− ϕ)(ρCp)f + ϕ(ρCp)s, (9)

where kf and ks are the thermal conductivities of �uid and the solid particles,
respectively, and (ρCp)s is the heat capacity of the solid.

By integrating the Eq. (1), the following expression can be attained:

f(θ) = ru(r, θ), (10)
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where f(θ) is an arbitrary function of θ. Next, by de�ning the dimensionless
parameters

F (η) =
f(θ)

Ur
, η =

θ

α0
, β(η) =

T

Tw
, (11)

the employment of (11) into Eqs. (2) and (3) eliminates the pressure terms
and gives the following ordinary di�erential equations:

F ′′′ + 2α0Re(1− ϕ)2.5A1FF ′ + 4α2
0F

′ = 0, (12)

β′′ +
A2
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EcPr(4α2

0F
2 + F ′2) = 0, (13)

along with the boundary conditions

F (0) = 1, F ′(0) = 0, F (1) = 0, β(1) = 1, β′(0) = 0, (14)

where Re is the Reynolds numbers, Ec is the Eckert number and Pr is the
Prandtl number. These governing parameters can be de�ned as
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,
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.

(15)

In the de�nition of Re, when α0 > 0 and U > 0, it connotes the state of
a diverging channel while when α0 < 0 and U < 0, it re�ects the state of a
converging channel. The associated physical quantities of interest in the present
study are the skin friction coe�cient (Cf r) and the local Nusselt number (Nur)
which can be de�ned as (see Moradi et al. (2015))

Cf r =
τw

ρfU2
, Nur =

rqw
kfTw

, (16)

where τw and qw indicate the wall shear stress and heat �ux along the converg-
ing/diverging channel respectively, and are de�ned as follows:

τw =
µnf
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The substitution of (17) into (16) and by using (11), the reduced skin friction
coe�cient and the reduced local Nusselt number can be attained as

RerCf r =
1

(1− ϕ)2.5
F ′(1), Nur = −A3

α0
β′(1), (18)

where Rer =
rUρfα0

µf
is the local Reynolds number.
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3. Results and discussion

The reduced version of the mathematical model as in (12)-(14) is solved by
using the MATLAB solver bvp4c function. This built-in function applies the
collocation method and e�cient in solving the boundary value problem even
with the poor guesses (see Gladwell et al. (2003)). However, a good initial guess
is requisite to obtain the non-uniqueness numerical solutions. All numerical
results are produced with a �xed value of the Prandtl number that is Pr = 18.3
(kerosene at 323.15K). In this paper, the �paired solutions" term has been
introduced. These paired solutions comprise the �rst and second solutions.
The �rst and second solutions are named as the paired solutions because both
solutions meet at one critical point. In this work, α0 is considered in the radian,
and all numerical results are generated by using the values as in Table 1. Table
2 shows the comparison of the numerical results with the previous literature,
and there is a good agreement with the digits up to six decimal places. This
proves the accuracy of the collocation method in solving a boundary layer
problem and able to withstand the spectral-homotopy analysis method which
has been employed by Motsa et al. (2010).

Table 1: Thermophysical properties of kerosene and copper (see Khan et al. (2015)).

Properties Kerosene Copper

ρ (kg/m3) 783 8933
(J/kg·K) 2090 385
(W/m·K) 0.145 401

Table 2: Comparison of the numerical values for F ′′(0) when Pr = 1, Ec = 0 and α0 =
0.087266463 rad.

Re = 20 Re = 60 Re = 100
Motsa et al. (2010) −2.5271922514 −3.9421402764 −5.8691651109

Turkyilmazoglu (2014) −2.52719225146 −3.94214027633 −5.86916511095
Present study −2.52719234127 −3.94214028422 −5.86916511211

Figure 2 presents the variations of RerCf r against α0 as ϕ varies. When
α0 ≥ 1.17, the value of RerCf r increases as ϕ decreases from 0.05 to 0.005.
The decrement in the solid volume fraction of copper (Cu) a�ects the density
of the base �uid, which is kerosene, to decrease. Eventually, this increases
the wall shear stress along the diverging channel and results in the increment
of the reduced skin friction coe�cient. The positive values of RerCf r when
α0 ≥ 1.17 indicate that kerosene imposes the drag force on the diverging wall.
The second solution is absent when the channel is diverging. When −2.21 ≤
α0 < 1.17, the values of RerCf r (�rst solution) decline with the decrement of ϕ.
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When the value of ϕ is decreasing, the viscosity of the kerosene-based nano�uid
decreases and reduces the �uid velocity at the converging channel (see Figure
3). The wall shear stress along a converging channel decreases and RerCf r
declines. However, the second solution within −2.21 ≤ α0 < 1.17 conveys an
increment in RerCf r as ϕ decreases. These second solutions indicate the �ow
with the separations, in which increase the shear stress along the converging
wall. As the channel is converging (−2.21 ≤ α0 < 1.17), RerCf r starts to take
the negative value and implies the converging wall impels the drag force to
the nano�uid. The trend of RerCf r (�rst solution) continues to change when
−2.9 ≤ α0 < −2.21 as the value of RerCf r increases as ϕ decreases. The second
solution in the range of −2.9 ≤ α0 < −2.21 shows the decrement of RerCf r as
ϕ decreases. This irregular trend of the solutions is most probably due to the
state of the converging channel. The three points, (1.17, 1.25), (−2.21,−3.37)
and (−2.9, 3.7) which are highlighted in Figure 2 change the trend of RerCf r
accordingly as ϕ decreases. Figure 2 also exhibits that an increment in ϕ delays
the �ow separation as the channel is converging.

Figure 2: Variations of RerCf r
against α0 when Pr = 18.3, Ec = 1.5 and Re = 10 as ϕ varies.
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Figure 3: Velocity pro�les, F (η) when Pr = 18.3, Ec = 1.5, α0 = −2, and Re = 10 for some values
of ϕ.

Figure 4 displays the behaviour of Nur as ϕ varies along the convergent/
divergent channel. When the channel is diverging, the value of Nur increases
as ϕ increases. The suspended Cu nanoparticles in the kerosene with a higher
thermal conductivity increase the heat �ux along the diverging channel. Thus,
the rate of heat transfer is enhanced in the diverging channel. The opposite
trend can be perceived with the converging channel. Both solutions express the
decrement of Nur as ϕ increases. Although the thermal conductivity of the
nano�uid is high, the converging channel persuades the heat �ux to decrease.
The temperature pro�les as in Figure 5 support the decrement of Nur as the
nano�uid temperature decreases when ϕ increases in the converging channel.

Figure 4: Variations of Nur against α0 when Pr = 18.3, Ec = 1.5 and Re = 10 as ϕ varies.
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Figure 5: Temperature pro�les, β(η) when Pr = 18.3, Ec = 1.5, α0 = −2, and Re = 10 for some
values of ϕ.

Figure 6 shows the e�ect of Ec onNur as the channel is converging/diverging.
In a diverging channel, an increment of Ec increases the value of Nur. An in-
crement in Ec elucidates more heat dissipates in the �uid �ow. Consequently,
the rate of heat transfer increases in the diverging channel. On the other hand,
the paired solutions in the range of α0 < 0 disclose the deterioration of Nur

when Ec increases. The converging channel which limits the �uid �ow area
may reduce the heat �ux along the surface, and it is proved by the temper-
ature pro�les as in Figure 7 where an increment of Ec reduces the nano�uid
temperature in the converging channel. Next, Figure 8 reveals the in�uence
of Re towards RerCf r as the channel is converging/diverging. Figure 8 also
reports the inconsistent patterns as in Figure 2. When α0 ≥ 2.36, RerCf r
decreases as Re increases.

An increment of Re increases the inertial forces which reduce the wall shear
stress along the diverging channel, hence RerCf r decreases. The opposite be-
haviour of RerCf r is observed as Re increases after (2.36, 3.37). An increment
of Re enhanced RerCf r within 0 ≤ α0 < 2.36. This may be due to the changes
in the width of the channel. The changes in the width of the diverging channel
might have contributed to the inconsistency behaviour of RerCf r. Meanwhile,
when α0 < 0, the paired solutions exhibit the decrement of RerCf r as Re
increases. Although the increment in Re improves the �uid velocity, the con-
verging channel may reduce the wall shear stress and a�ects the value of RerCf r
to decline. Figure 9 conveys the increment in the �uid velocity as Re increases.
Overall, paired solutions are apparent in the converging channel and variation
in ϕ and Re delays the �ow separation.
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Figure 6: Velocity pro�les, F (η) when Pr = 18.3, Ec = 1.5, α0 = −2, and ϕ = 0.05 for some values
of Re.

Figure 7: Temperature pro�les, β(η) when Pr = 18.3, α0 = −2, ϕ = 0.05 and Re = 10 for some
values of Ec.

Figure 8: Variations of RerCf r
against α0 when Pr = 18.3, Ec = 1.5 and ϕ = 0.05 as Re varies.
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Figure 9: Velocity pro�les, F (η) when Pr = 18.3, Ec = 1.5, α0 = −2, and ϕ = 0.05 for some values
of Re.

4. Conclusions

The present study examined the classical Je�ery-Hamel channel �ow in a
kerosene-based nano�uid containing Cu nanoparticles with the e�ects of viscous
dissipation. The problem has been solved numerically by using the collocation
method. It is worth to apply the bvp4c function in the MATLAB as the paired
numerical solutions are attainable. The plots of RerCf r and Nur captured in-
teresting behaviours of the paired solutions along a convergent/divergent chan-
nel. Few signi�cant points which are found to change the trend of the physical
quantities have been accentuated. The paired solutions are observed when the
channel is converging, while the unique solution is noticed in the diverging
channel. An increment in ϕ and Re managed to delay the �ow separation in
the converging channel.
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