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ABSTRACT

Detection of a brain tumor in Magnetic Resonance Imaging (MRI) is
always challenging due to the gray level comparison of tumor and nor-
mal tissue. Model-based clustering with a Finite Mixture Model (FMM)
is widely used to segment the tumor as the Region of Interest (ROI).
The Gaussian Mixture Model (GMM) is becoming abandoned because,
in reality, the symmetric distribution approach is less able to explain the
MRI data pattern. In addition, the use of a symmetric distribution can-
not compete for the model parsimonious of an asymmetric distribution
to exhibit the long and heavy tail pattern of the data. On this kind
of data, more Gaussian mixture components are needed in the GMM.
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This study, therefore, develops a mixture model with asymmetric dis-
tribution, called Fernandez-Steel Skew Normal (FSSN). It is one of the
Neo-Normal distributions that can be skewed adaptively but remains
stable in its mode of distribution. Bayesian coupled with the Markov
chain Monte Carlo (MCMC) approach is employed for estimating FSSN
distribution parameters numerically. Silhouette Index (SI) coe�cient is
performed to validate the result of the segmentation. The results indicate
that the FSSN mixture model (FSSN-MM) has a better performance at
representing the data pattern of a brain tumor MRI. This is indicated
by the higher SI coe�cient of the FSSN-MM than GMM. In addition,
the FSSN-MM is more parsimonious, since it has the smallest number
of clusters. Moreover, FSSN-MM is able to detect the brain tumor more
precisely than the original GMM approach.

Keywords: Bayesian, brain tumor, image segmentation, Fernandez-steel
skew normal and mixture model.
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1. Introduction

The brain is a vital organ which has the ability to control every human
activity. One disease that attacks the brain is a tumor. It occurs due to
the proliferation and rapid growth of abnormal cells in the central nervous
system (CNS) and brain wrapping membranes (meningeal membranes) (ABTA,
2018). According to World Health Organization (WHO), there were 5,323 cases
of brain and nervous system tumor in Indonesia during 2018. Brain tumors
amount to the 15th largest cause of death compared to all types of cancer,
both in men and women. The total mortality (number of deaths) in 2018 due
to brain tumors is 4,229 cases (Globocan, 2018). This statistical information
makes an important excuse to develop this study.

An MRI is a form of digital imaging technology which is often used by
health experts to detect brain tumors. Examination of MRI images requires
precision and accuracy, and there are di�culties in processing these images.
One such di�culty is separating one object that's considered medically more
important, namely it the Region of Interest or ROI, than another object (Non-
ROI) (Angulakshmi and LakshmiPriya, 2018). This process is called MRI
image segmentation that separating the image of the brain tumor as ROI from
other background images as Non-ROI.

Many methods have been developed for image segmentation; one of them
is Model-Based Clustering which based on a probability of the data and con-
structed as the FMM. GMM is one of the FMM which are widely used for image
segmentation. The disadvantage of using GMM relates to its parsimonious is-
sues. The Gaussian distribution that constructs the GMM has a short-tailed
characteristic. When the data pattern has a longer tail, it would be approached
with more components of the Gaussian distribution to form a mixture model.

An alternative to this problem is using the Neo-normal distribution as a
replacement for the Gaussian distribution. This distribution is an adaptive
distribution which is more �exible to capture both the symmetrical and the
skew data pattern (Pravitasari et al., 2019a). One of the Neo-Normal fam-
ily is the FSSN distribution developed by Fernandez and Steel (1998). FSSN
have succeeded to improve the previous Neo-Normal distribution, i.e. The Ex-
ponential Power (EP) distribution (Box and Tiao, 1992) and Azzalini Skew
Normal (Azzalini, 1985). EP distribution very smart to capture all of lep-
tokurtic, mesokurtic, and platikurtic adaptively to data, in contrast it blinds
to skewness of data. While Azalini Skew Normal is able to accommodate the
skewness but its not stable in its location. Another Neo-normal distribution
developed by Iriawan (2000) namely Modi�ed Stable Burr (MSBurr), when MS-
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Burr approximated the normal density called MSNBurr, while approximated
Student's t density called MSTBurr. FSSN distribution is a distribution that
forms a normal or Gaussian distribution or Student's t that can be skewed
adaptively but still stable in its mode (Castillo et al., 2011). Therefore, this
study will employ the FSSN distribution in composing a mixture model; named
as the FSSN-MM, and it's expected to produce better segmentation and more
parsimonious than the original GMM approach. Last but not least, the opti-
mization to estimate model parameters is used by employing Bayesian coupled
with the MCMC approach, since the classical approach did not provide the
closed form solutions.

2. Fernandez-Steel Skew Normal Mixture
Model (FSSN-MM)

In this research, the method used for image segmentation of MRI brain
tumor is FSSN-MM. Suppose that ε is the residual model that spread in the
domain −∞ < ε <∞ and is normally distributed, ε(0, σ2). FSSN distribution
for a variable ε according to Fernandez and Steel (1998), is de�ned by equation
(1).

f(ε |γ) = 2

γ + 1
γ

{
f

(
ε

γ

)
I[0,∞) (ε) + f (γε) I(−∞,0)(ε)

}
, γ = (0,∞) (1)

where γ is the skewness or transformation parameter. This distribution will
lose its symmetry when γ 6= 1, skew to the left when γ < 1 and skew to the
right when γ > 1. Both patterns indicate that the mode of distribution is still
stable. Based on the equation (1), the basic distribution that forms is a normal
or Gaussian distribution, where the Gaussian density of ε is shown in equation
(2).
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where µ is the location parameter and σ is the scale parameter, −∞ < ε <∞,
−∞ < µ < ∞ and σ > 0. In this study, the data used are MRI images of
brain tumors that were provided by RSUD Dr. Soetomo Surabaya, Indonesia.
Suppose yi, i = 1, 2, ..., n are the grayscale intensities in pixels of the MRI
image. If y1, y2, ..., yn follows the FSSN distribution, then the densities should
be given by

f (y |µ, σ, γ ) = 2
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where 0 ≤ y ≤ 255, 0 ≤ µ ≤ 255, σ > 0, and γ > 0.

The FSSN distribution in equation (3) will be used to construct the mixture
model, called FSSN mixture model, for which the densities is provided by
equation (4).

f (y |µ,σ,γ,w ) =
K∑
j=1

wjfj (y |µj , σj , γj)

=
K∑
j=1

2wj

γj+
1
γj

(
e
− 1

2
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y−µj
σj

)2
σj
√
2π

{
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γ2
j
I[µ,255) (y) + γ2j I(0,µ) (y)

})
,

(4)
where wj is the proportion parameter of the mixture component that satis�es

0 ≤ wj ≤ 1, j = 1, 2, ...,K, and
K∑
j=1

wj = 1.

2.1 Bayesian MCMC for FSSN-MM

The Markov chain Monte Carlo (MCMC) is one of the optimization meth-
ods which is good for estimating the parameter of FMM (Pravitasari et al.,
2019b). In order to meet the requirement of MCMC, we need to design the
prior distribution for each parameter as follows:

1. Prior distribution for µj , j = 1, 2, ...,K, according to Gelman et al. (2014),
is Gaussian(ηj , ϕj) .While prior for σj , j = 1, 2, ...,K is Invers Gamma
(αj , βj).

2. Prior distribution for γj , j = 1, 2, ...,K, according to Fernandez and Steel
(1998), is Gamma(aj , bj).

3. Gelman et al. (2014) describes that the prior distribution for parameters
of mixture proportions wj , j = 1, 2, ...,K is the Dirichlet(δ1, δ2, ..., δK)
distribution.

While using the mixture model, each pixel yi, i = 1, 2, ..., n has a latent
variable zi, i = 1, 2, ..., n , where zi = (zij)

K
j=1 = (zi1, zi2, ..., ziK), which is the

allocation of each observation in each sub-population of the mixture model.
A latent zij will be worth one, i.e. zij = 1, if the ith pixel is allocated in
the jth sub-population. Otherwise zij = 0. So the likelihood function of the
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FSSN-MM with a latent variable zi is de�ned in equation (5).

f (y, z |µj , σj , γj , wj ) =
n∏
i=1

K∏
j=1

(wjfj (y |µj , σj , γj))zij . (5)

Full conditional posterior distribution is used to generate parameter values
that will be estimated by the Bayesian MCMC. In this method, the full condi-
tional posterior of each parameter is derived from the joint posterior calculated
by multiplying the likelihood and the prior distribution of parameters which
are estimated. The full conditional posterior of each parameter is explained
below (all equations are written in logarithmic form for simplicity).

1. Equation (6) shows the full conditional posterior for location parameter
µj , j = 1, 2, ...,K

log f (µj |σj , γj , wj , z,y ) = constant− 1

2
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)2

− 1

2
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(
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)2

(6)
where all parts of the equation that do not contain the parameter µj are
compiled as constant.

2. Equation (7) shows the full conditional posterior for parameter σj , j =
1, 2, ...,K
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σj
−

n log
(
σjγj
√
2π +

σj
√
2π

γj

)
−

n∑
i=1

(
yi−µj
σj

)2

2 ,

(7)
where all parts of the equation that do not contain the parameter σj are
collected together as a constant.

3. Equation (8) shows the full conditional posterior for parameter γj , j =
1, 2, ...,K

log f (γj |µj , σj , wj , z,y ) = constant+ (aj − 1) log (γj)− (bjγj)+
n∑
i=1

log
(
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)
−
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)
,

(8)
where all parts of the equation that do not contain the parameter are
summed as a constant.
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4. Equation (9) shows posterior distribution for parameter wj , j = 1, 2, ...,K

f (wj |y, z, nj , αj , φj) ∝
K∏
j=1

w

n∑
i=1

zij

j =

K∏
j=1

w

(
n∑
i=1

zij+1

)
−1

j . (9)

This is a Dirichlet

(
1 +

n∑
i=1

zi1, . . . , 1 +
n∑
i=1

ziK

)
distribution.

5. The latent variable zij , i = 1, 2, ...n and j = 1, 2, ...,K, only has two possi-
bilities value, that is 0 or 1. For certain ith data, the jth cluster will be set

to 1 based on the most likely of ith data to each Bernoulli
(
f(yi|µj ,σj ,γj )wj

f(yi)

)
,

j = 1, 2, ...,K. Therefore zi = (zi1, zi2, ..., ziK) will follow the Multino-
mial (1, ωi1, . . . , ωik) distribution where

ωij =
f (yi |µj , σj , γj )wj

f (yi)
. (10)

Algorithm 1 states the steps of the Gibbs sampling framework as the process
of Bayesian MCMC to optimize the FSSN-MM.

Algorithm 1. Gibbs Sampling Algorithm for FSSN-MM

1. Set the initial value for the parameters µ0
1, ..., µ

0
K , σ

0
1 , ..., σ

0
K , γ

0
1 , ..., γ

0
K ,

w0
1, ..., w

0
K , z

0
1 , ..., z

0
n

2. Update each variable in turn at the tth iteration, t = t+ 1

a Update value µj , j = 1, 2, ...,K by generating µtj according to equa-
tion (6)

b Update value σj , j = 1, 2, ...,K by generating σtj according to equa-
tion (7)

c Update value γj , j = 1, 2, ...,K by generating γtj according to equa-
tion (8)

d Update value wj , j = 1, 2, ...,K by generating wtj that follow the

Dirichlet

(
1 +

n∑
i=1

zi1, ..., 1 +
n∑
i=1

ziK

)
distribution.

e Update value zi by generating z
t
i that follows the Multinomial (1, ωi1,

ωi2 . . . , ωik) distribution, where

ωij =
f (yi |µj , σj , γj )wj

f (yi)

for i = 1, 2, ..., n, j = 1, 2, ...,K.

3. Repeat step 2 for t = 1, 2, ..., T (T is number of samples generated).
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2.2 Cluster Validation

Cluster validation is required to determine the optimum number of clusters.
An index to validate a number of clusters is the Silhouette Index (SI). The SI
for every ith data at jth cluster is formulated in equation (11) (Thinsungnoena
et al., 2015):

SIji =
bji − a

j
i

max(aji , b
j
i )
, (11)

where aji is the degree of similarity of a data is to its cluster, while bji is the
degree of similarity of a data to the other clusters.

The SI for each jth cluster is the average value of all the data included in
the jth cluster. It can be formulated by equation (12). While the overall SI of
the image is the average of all SI clusters formulated by equation (13).

SIj =
1

mj

mj∑
i=1

SIji (12)

SI =
1

K

K∑
j=1

SIj (13)

where mj is the total number of each data which is member of the jth cluster.
SI has a range of values [−1, 1], the closer the SI to 1, the more precise the
data in the cluster.

3. Results and Discussions

In this research, an MRI image used is determined by the medical recom-
mendations. The chosen image sequence is ax T1 memp+C. It is one of the
axial layers of the brain scan which adds contrast to enhance the tumor area.
The preprocessing is conducted to improve the image quality and eliminate
skull bones for easier segmentation. Figure 1 (a) and Figure 1 (b) show the
MRI image, before and after preprocessing.

A histogram of a grayscale image can describe the distribution of its pixel
intensity. Figure 2 (a) and Figure 2 (b) show the histogram of the MRI im-
age before and after preprocessing. The histogram after preprocessing, has an
asymmetrical shape and indicates skewness. Furthermore, histogram in Figure
2 (b) appears to have three modes, even though the modes of ROI pixels some-
how look smaller and less visible. Thus, applying the mixture model framework
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is considered appropriate in this case, as the histogram shows multimodality.
In this study, the image is segmented using the FSSN-MM and compared with
the GMM. The GMM used in this study are adapted from Sianipar (2017).

Figure 1: Image of (a) Original image of MRI sequence ax T1 memp+C, and (b) The sequence
after preprocessing

Figure 2: Histogram of (a) Original image of MRI sequence ax T1 memp+C, and (b) The histogram
after preprocessing

Table 1 shows the segmentation results for both the GMM and FSSN. The
method was used for K= 2, 3,..., 7 clusters. For K= 2 clusters, the segmen-
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tation for both the GMM and the FSSN-MM is unable to capture the tumor
area. This 2-components cluster only separates the brain from the background.
Therefore, it will not be included in the analysis. Figure 3 shows the SI for
both the GMM and the FSSN-MM. The bigger the SI value, the more optimum
the number of clusters.

Table 1: Result of segmentation between GMM and FSSN-MM
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Figure 3: Silhouette Index of FSSN-MM and GMM

As in Figure 3, it can be determined that FSSN-MM reach the optimum in
two number of clusters, while GMM in seven number of clusters. GMM gives
a higher cluster number than the FSSN-MM, this indicates that the FSSN is
more parsimonious than GMM due to its capability to explain the data pattern
better despite having only three clusters. Their comparison of the estimated
parameters is given in Table 2.

Table 2: Comparison of parameter model of GMM and FSSN-MM

K index
FSSN-MM GMM

w µ σ γ w µ σ
1 0.440 1.679 23.579 4.468 0.522 1.669 0.748
2 0.551 108.31 63.879 12.103 0.030 89.949 16.86
3 0.009 148.04 76.028 14.405 0.230 105.453 9.959
4 0.197 114.500 7.341
5 0.014 127.675 14.620
6 0.004 147.374 11.599
7 0.002 171.629 34.498

In Table 2, the ROI in FSSN-MM lies in the third cluster, while in GMM
is located in the seventh cluster. ROI in both methods is represented by the
largest grayscale value, that is µ = 148.04 for FSSN-MM and µ = 171, 629 for
GMM. From the parameters w and σ it can be determined that the number
of ROI pixels in the FSSN-MM is greater and has larger range of grayscale
than the GMM. Especially for FSSN-MM, the γ parameter indicates that the
distribution of each cluster is right skew.
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Figure 4 demonstrates the visualization of the image before and after seg-
mentation using the GMM and FSSN-MM. The segmentation results for both
methods are chosen from its optimum number of clusters. This �gure also shows
how image segmentation using FSSN-MM clari�es the ROI area which is a sig-
ni�cant contribution of this research. This result can be used as a suggestion
for paramedics to detect the location of brain tumors more precisely.

Figure 4: The segmentation result in the optimum number of cluster; (a) Without segmentation,
(b) GMM with seven clusters, and (c) FSSN-MM with three clusters

4. Conclusions

Based on the results and discussion, the FSSN-MM gives better results of
segmentation than the GMM. This is indicated by the SI coe�cient of FSSN-
MM which is higher than GMM. Another result also shows that the FSSN-
MM is more parsimonious than GMM, as it has a smaller number of clusters,
the FSSN-MM has been already able to capture the pattern of the original
image. For further research, we suggest adding a more spatial approach to
image segmentation. This is due to the FSSN-MM segmentation still containing
a lot of noise which should be eliminated for a better result.
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