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ABSTRACT

For a positive integer n ≥ 1 the n-th cyclotomic polynomial is de�ned

by Φn(z) =
∏
ζn=1(z − ζ), where ζ are the primitive n-th roots of unity.

These polynomials are known to possess many interesting properties. In

this article we establish an integral formula for the coe�cients of the

cyclotomic polynomial, we then discuss the direct and alternate sums of

coe�cients, as well as the mid-term of Φn(z). Finally, these results are

used in the computation of certain trigonometric integrals.
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1. Introduction

Recall that the n-th cyclotomic polynomial Φn is de�ned by

Φn(z) =
∏

1≤k≤n−1
gcd(k,n)=1

(z − ζkn), (1)

where ζn = cos 2π
n + i sin 2π

n denotes the �rst primitive root of order n of the
unity. It is well known that the degree of Φn is ϕ(n), where ϕ denotes Euler's
totient function.

The �rst six cyclotomic polynomials are

Φ1(z) = z − 1, Φ2(z) = z + 1, Φ3(z) = z2 + z + 1,

Φ4(z) = z2 + 1, Φ5(z) = z4 + z3 + z2 + z + 1, Φ6(z) = z2 − z + 1.

Using the Möbius function µ, de�ned by

µ(n) =


1 if n = 1;

(−1)k if n = p1p2 · · · pk;

0 if n = p2m,

where p, p1, . . . , pk are primes, an alternative form of (1) is obtained by the
multiplicative version of the Möbius inversion formula, as

Φn(z) =
∏
d|n

(
xd − 1

)µ(n/d)
.

The following formula is also known to hold,

zn − 1 =
∏
d|n

Φd(z). (2)

For m ≥ 1, one obtains by induction from (2), that

Φ2m(z) = z2m−1

+ 1. (3)

Also, it is well-known that every cyclotomic polynomial has integer coe�cients
and is irreducible over Z (Ireland and Rosen, 1990, Theorem 1, p.195).

The cyclotomic polynomials have many important applications. Here we
only mention that they are used in the proof of the following classical results:
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1.(Gauss-Wanzel) It is possible to construct the regular n-gon with a straight-
edge and compass if and only if n has the form 2kp1p2 · · · pr, where k ≥ 0 and
the pj 's are distinct Fermat primes.

2.(Dirichlet). Let n be a positive integer. Then there exist in�nitely many
prime numbers p with p ≡ 1 (mod n).

3.(Wedderburn). Any �nite associative skew �eld R is commutative, i.e., it is
a �eld.

Numerous interesting properties of the cyclotomic polynomials and their
coe�cients have been discovered over more than a hundred years. First, the
polynomials up to n < 105 only have 0, 1 and −1 as coe�cients. In 1883,
Mignotti pointed out that −2 �rst appears as the coe�cient of z7 of Φ105, while
Φn only has the coe�cients 0 and ±1, whenever n is a product of at most two
distinct primes. Then, 2 �rst appears for n = 165, while all coe�cients of Φn
do not exceed 2 in absolute value for n < 385. Later, in 1895 Bang showed
that for n = pqr with p < q < r odd primes, no coe�cient of Φn is larger than
p− 1. An important breakthrough came in 1931, when Schur showed that the
coe�cients of cyclotomic polynomials can be arbitrarily large in absolute value.
The history of these early results can be found in Lehmer (1936). Later, Suzuki
(1987) proved that any integer number can be a coe�cient of a cyclotomic
polynomial of a certain degree. For more historical details regarding the study
of cyclotomic polynomials and their coe�cients we refer the reader to Erdös
(1946), Erdös and Vaughan (1974), Ji and Li (2008), and to the monograph
Bachman (1993).

From the extensive list of references devoted to the study of the coe�cients
of cyclotomic polynomials, we here mention the papers Bateman (1949), Bate-
man et al. (1981), Endo (1975), Maier (1990), Maier (1993), Maier (1995) or
Vaughan (1975). Other important results concerning the coe�cients of cyclo-
tomic polynomials and their properties have also featured in the works Beiter
(1964), Beiter (1968), Beiter (1971), Carlitz (1966), Dresden (2004) and Lam
and Leung (1996).

Attempts at computing explicit formulae for the coe�cients (at least in
theory) are mentioned in (Sándor and Crstici, 2004, p.258-259), using fairly
complicated expressions. Using Stirling and Bernoulli numbers, Lehmer (1966)
has obtained formulae for the coe�cients of Φn(z + 1) as polynomials with ra-
tional coe�cients of certain Jordan functions. In Grytczuk and Tropak (1991),
the authors provided a numerical method for the determination of the cyclo-
tomic polynomial coe�cients.
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Integer sequences related to the coe�cients of cyclotomic polynomials can
be found in the OEIS (2018).

In this article we �rst give a unitary integral formula for all the coe�cients
of Φn (Theorem 2.1). We then present some applications, related to the direct
and alternate sums of coe�cients, and to the mid-term of Φn, in connection
with some trigonometric integrals (Theorems 3.1 and 3.2).

2. An integral formula for the coe�cients of Φn

The proof of the main result uses the following known identity involving
Euler's totient function.

Lemma 2.1. Let n ≥ 3 be a positive integer. The following formula holds:∑
1≤k≤n−1
gcd(k,n)=1

k =
n

2
ϕ(n). (4)

Proof. If k ∈ {1, . . . , n− 1} is relatively prime with n, then so is number n−k.
There are ϕ(n) numbers relatively prime with n in total, hence there are ϕ(n)/2
pairs of numbers which sum up to n.

Writing the polynomial Φn(z) in algebraic form, we obtain:

Φn(z) =

ϕ(n)∑
j=0

c
(n)
j zj ,

where c
(n)
j , j = 0, 1, . . . , ϕ(n), are the coe�cients of Φn(z). As we have already

mentioned, all the coe�cients c
(n)
j are integers.

In order to get a unitary formula for c
(n)
j , we introduce the function

Λn(t) =
∏

1≤k≤n−1
gcd(k,n)=1

sin

(
t− kπ

n

)
. (5)

For n = 1, 2 one obtains the following expressions,

Λ1(t) = sin (t− π) = − sin t,

Λ2(t) = sin
(
t− π

2

)
= − cos t.
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Figure 1: Function Λn(t) evaluated for 0 ≤ t ≤ π and (a) n = 2; (b) n = 3; (c) n = 4; (d) n = 5.

As polynomials Φ1(z) and Φ2(z) are linear, in what follows we assume n ≥ 3.

Theorem 2.1. The coe�cients c
(n)
j are given by the following integral formula:

c
(n)
j =

2ϕ(n)

π

∫ π

0

Λn(t) · cos(ϕ(n)− 2j)tdt, j = 0, 1, . . . , ϕ(n). (6)

Proof. Denote by ζn = cos 2π
n +i sin 2π

n and let z = cos 2t+i sin 2t for t ∈ [0, 2π].
By the well-known de Moivre formula and work with complex numbers in polar
form (see for example Andreescu and Andrica (2014)), for k = 1, . . . , n, we have

z − ζkn =

(
cos 2t− cos

2kπ

n

)
+ i

(
sin 2t− sin

2kπ

n

)
= −2 sin

(
t− kπ

n

)
sin

(
t+

kπ

n

)
+ 2i sin

(
t− kπ

n

)
cos

(
t+

kπ

n

)
= 2i sin

(
t− kπ

n

)[
cos

(
t+

kπ

n

)
+ i sin

(
t+

kπ

n

)]
.
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By Lemma 2.1, for n ≥ 3, one can write the polynomial Φn(z) in the form

Φn(z) =
∏

1≤k≤n−1
gcd(k,n)=1

(z − ζkn)

= (2i)ϕ(n)
∏

1≤k≤n−1
gcd(k,n)=1

sin

(
t− kπ

n

)[
cos

(
t+

kπ

n

)
+ i sin

(
t+

kπ

n

)]

= (2i)ϕ(n)Λn(t) ·
∏

1≤k≤n−1
gcd(k,n)=1

[
cos

(
t+

kπ

n

)
+ i sin

(
t+

kπ

n

)]

= (2i)ϕ(n)Λn(t) ·
[
cos

(
ϕ(n)t+

ϕ(n)π

2

)
+ i sin

(
ϕ(n)t+

ϕ(n)π

2

)]
= (2i)ϕ(n)(−1)

ϕ(n)
2 Λn(t) · [cosϕ(n)t+ i sinϕ(n)t]

= 2ϕ(n)Λn(t) · [cosϕ(n)t+ i sinϕ(n)t] ,

where we have used that ϕ(n) is even for n ≥ 3, and the multiplication of
complex numbers in polar form. For every j = 0, 1, . . . , ϕ(n), one may write

c
(n)
j +

∑
k 6=j

c
(n)
k zk−j = z−j

∏
1≤k≤n−1
gcd(k,n)=1

(z − ζkn)

= 2ϕ(n)Λn(t) · (cos 2jt− i sin 2jt) [cosϕ(n)t+ i sinϕ(n)t]

= 2ϕ(n)Λn(t) · [cos(ϕ(n)− 2j)t+ i sin(ϕ(n)− 2j)t].

Integrating on the interval [0, π] we obtain formula (6). This is true since
the integral of zk−j over [0, π] vanishes whenever k 6= j.

In addition, from the proof of the integral formula (6) it follows that∫ π

0

Λn(t) · sin(ϕ(n)− 2j)tdt = 0, j = 0, 1, . . . , ϕ(n). (7)

The coe�cients of the cyclotomic polynomial are known to be reciprocal.
Here we give an elegant proof based on the integral formula (6).

Theorem 2.2. The cyclotomic polynomial Φn(z) is reciprocal, that is its coef-
�cients satisfy the following symmetry relations

c
(n)
j = c

(n)
ϕ(n)−j , j = 0, 1, . . . , ϕ(n).
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Proof. Using formula (6), for every j = 0, 1, . . . , ϕ(n), we have

c
(n)
ϕ(n)−j =

2ϕ(n)

π

∫ π

0

Λn(t) · cos (ϕ(n)− 2(ϕ(n)− j)) tdt

=
2ϕ(n)

π

∫ π

0

Λn(t) · cos (2j − ϕ(n)) tdt

=
2ϕ(n)

π

∫ π

0

Λn(t) · cos (ϕ(n)− 2j) tdt = c
(n)
j .

Here, we provide some numerical examples which illustrate the result in
Theorem 2.1 when n is a product of three or more distinct odd primes. For the
calculations in this section we have used Matlab® and formula (6).

Example 1. n = 105 = 3× 5× 7. This is the �rst time when the cyclotomic
polynomial has a coe�cient that is not equal to 0, 1,−1, discovered by Mignotti
in 1883, as we have already mentioned in the introduction. The degree of the

polynomial is ϕ(105) = 48 and c
(105)
7 = c

(105)
41 = −2.

Example 2. n = 165 = 3× 5× 11. This is the �rst time when the cyclotomic
polynomial has 2 as a coe�cient. The degree of the polynomial is ϕ(165) = 80

and we have c
(165)
16 = c

(165)
17 = c

(165)
31 = c

(165)
32 = c

(165)
33 = c

(165)
47 = c

(165)
48 =

c
(165)
49 = c

(165)
63 = c

(165)
64 = 2, while −2 does not feature as a coe�cient.

Example 3. n = 385 = 5× 7× 11. This is the �rst time when the cyclotomic
polynomial has −3 as a coe�cient. In this case the degree of the polynomial

is ϕ(385) = 240 and we have c
(385)
119 = c

(385)
120 = c

(385)
121 = −3, while 3 does not

feature in the coe�cients list.

Example 4. n = 1155 = 3×5×7×11. This is the �rst product of four primes.
The cyclotomic polynomial has all the numbers between −3 and 3 as a coe�-
cients. The degree of the polynomial is ϕ(1155) = 480. In this case we have

the values c
(1155)
j = 3 for j = 95, 115, 117, 146, 229, 240, 251, 334, 363, 365, 385,

and c
(1155)
j = −3 for j = 94, 116, 194, 286, 364, 386.

One can easily check that the conclusion of Theorem 2.2 is veri�ed in all

these numerical examples, as for instance we have c
(1155)
95 = c

(1155)
385 , while clearly,

95 + 385 = 480 = ϕ(1155).
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3. Applications

In this section we discuss integral formulae for the direct and alternate sums
of coe�cients and for the mid-term of the cyclotomic polynomial.

3.1 Direct sum of coe�cients Φn(1)

This produces the following integer sequence

0, 2, 3, 2, 5, 1, 7, 2, 3, 1, 11, 1, 13, 1, 1, 2, 17, 1, 19, 1, 1, 1, 23, . . . ,

indexed under the labels A020500 and A014963 in OEIS (2018). Interestingly,
this sequence has stretches of 1 of arbitrary length.

The following explicit formula is known for the sum of coe�cients:

Φn(1) =


0 if n = 1;

p if n = pm;

1 otherwise,

(8)

where m ≥ 1 is an integer and p is prime. We give an integral equivalent.

Theorem 3.1. Let n ≥ 3. Expression Φn(1) has the following integral formula:

Φn(1) =

ϕ(n)∑
j=0

c
(n)
j =

2ϕ(n)

π

∫ π

0

Λn(t) · sin(ϕ(n) + 1)t

sin t
dt. (9)

Proof. By the formula (6) for the coe�cients c
(n)
j one obtains

Φn(1) =

ϕ(n)∑
j=0

c
(n)
j =

ϕ(n)∑
j=0

2ϕ(n)

π

∫ π

0

Λn(t) · cos(ϕ(n)− 2j)tdt,

=
2ϕ(n)

π

∫ π

0

Λn(t) ·

ϕ(n)∑
j=0

cos(ϕ(n)− 2j)t

 dt.

The sum of cosines can be evaluated as follows,

ϕ(n)∑
j=0

cos(ϕ(n)− 2j)t · sin t =

ϕ(n)∑
j=0

1

2
[sin(ϕ(n)− 2j + 1)t− sin(ϕ(n)− 2j − 1)t]

=
1

2
[sin(ϕ(n) + 1)t− sin(−ϕ(n)− 1)t]

= sin(ϕ(n) + 1)t.
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Finally, dividing by sin t one obtains

ϕ(n)∑
j=0

cos(ϕ(n)− 2j)t =
sin(ϕ(n) + 1)t

sin t
, (10)

which leads to the �nal formula (9).

Combining formula (9) with (8) we obtain:

Corollary 1. For every integer n ≥ 3, the following formula holds∫ π

0

Λn(t) · sin(ϕ(n) + 1)t

sin t
dt =

{
pπ

2ϕ(n) if n = pm;
π

2ϕ(n) otherwise,

where p is a prime number.

Remark 3.1. The righ-hand side of (10) is in fact a polynomial in sin t and
cos t, hence the integral in formula (9) is not improper. Because ϕ(n) is even,
by de Moivre's formula one can write

cos(ϕ(n) + 1)t+ i sin(ϕ(n) + 1)t = (cos t+ i sin t)
ϕ(n)+1

=

ϕ(n)+1∑
k=0

ik
(
ϕ(n) + 1

k

)
(cos t)

ϕ(n)+1−k
(sin t)

k
.

Separating the real and imaginary parts, the following identities are obtained

cos(ϕ(n) + 1)t =

ϕ(n)/2∑
j=0

[
(−1)j

(
ϕ(n) + 1

2j

)
(cos t)

ϕ(n)−2j
(sin t)

2j

]
cos t,

sin(ϕ(n) + 1)t =

ϕ(n)/2∑
j=0

[
(−1)j

(
ϕ(n) + 1

2j + 1

)
(cos t)

ϕ(n)−2j
(sin t)

2j

]
sin t.

3.2 The mid-term of Φn(z)

The middle coe�cients for n ≥ 3 produce the following integer sequence

1, 0, 1,−1, 1, 0, 1, 1, 1,−1, 1,−1,−1, 0, 1,−1, 1, 1, . . . ,

indexed as A094754 in OEIS. The terms are also given by the integral formula

mn := c
(n)
ϕ(n)

2

=
2ϕ(n)

π

∫ π

0

Λn(t) dt. (11)
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Because the polynomial Φn(z) is reciprocal we have Φn(1) = 2a + mn, for
some integer a. By formula (8), Φn(1) is an odd number if n is not a power of
2. As a result, mn has to be an odd number in this case. Moreover, we have
mn = 0 if and only if n = 2m for some m ≥ 2. By this remark and formula
(11) we obtain the following property of the function Λn(t):∫ π

0

Λn(t) dt = 0, if and only if n = 2m, m ≥ 1.

While the terms of the sequence mn seem to be equal to −1, 0 or 1, other
negative and positive values appear. For example m385 = −3, m6545 = −5 and
m7735 = −7, while m1155 = 3, m4785 = 5, and m11305 = 19. Some of these
values are mentioned in the paper by Dresden (2004). This suggests that the
following property may hold:

Conjecture. Every odd integer can be the mid-coe�cient of some cyclo-

tomic polynomial.

3.3 Alternate sum of coe�cients Φn(−1)

The following explicit formula is known for the alternate sum of coe�cients.

Φn(−1) =


−2 if n = 1;

0 if n = 2;

p if n = 2pm;

1 otherwise,

(12)

where m ≥ 1 is an integer. We sketch the proof of the above formula when n
is odd. By formula (2) one obtains:

zn − 1

z − 1
=

∏
d|n, d>1

Φd(z), (13)

which evaluated for an odd number n at z = −1 gives

1 =
∏

d|n, d>1

Φd(−1). (14)

Clearly, this indicates that Φn(−1) = 1 whenever n is prime. Then, all divisors
d of n are odd, and one can use an inductive argument to show that Φn(−1) = 1.
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As an integer sequence, the terms of Φn(−1) recover entry A020513 in OEIS:

−2, 0, 1, 2, 1, 3, 1, 2, 1, 5, 1, 1, 1, 7, 1, 2, 1, 3, 1, 1, 1, 11, 1, 1, 1, 13, . . . .

By the formula (12), one can prove that this sequence also has stretches of 1
of arbitrary length, which is not mentioned in the OEIS.

We shall explore an integral equivalent of this result.

Theorem 3.2. Let n ≥ 3. Terms Φn(−1) have the following integral formula:

Φn(−1) =

ϕ(n)∑
j=0

c
(n)
j (−1)j =

2ϕ(n)

π

∫ π

0

Λn(t) · cos(ϕ(n) + 1)t

cos t
dt. (15)

Proof. By the formula (6) for the coe�cients c
(n)
j one obtains

Φn(−1) =

ϕ(n)∑
j=0

c
(n)
j (−1)j =

ϕ(n)∑
j=0

2ϕ(n)

π

∫ π

0

Λn(t)(−1)j cos(ϕ(n)− 2j)tdt,

=
2ϕ(n)

π

∫ π

0

Λn(t) ·

ϕ(n)∑
j=0

(−1)j cos(ϕ(n)− 2j)t

 dt.

For a �xed j ∈ {0, . . . , ϕ(n)}, the following identity holds

(−1)j cos(ϕ(n)− 2j)t = cos [(ϕ(n)− 2j)t− jπ] = cos
[
ϕ(n)t− 2j

(
t+

π

2

)]
.

Multiplying by sin
(
t+ π

2

)
one obtains

2 cos
[
ϕ(n)t− 2j

(
t+

π

2

)]
· sin

(
t+

π

2

)
=

sin
[
ϕ(n)t− (2j − 1)

(
t+

π

2

)]
− sin

[
ϕ(n)t− (2j + 1)

(
t+

π

2

)]
.

Summing for j = 0, . . . , ϕ(n), we obtain the telescopic sum

ϕ(n)∑
j=0

cos(ϕ(n)− 2j)t · (−1)j · sin
(
t+

π

2

)
=

sin
[
(ϕ(n) + 1)t+ π

2

]
− sin

[
−(ϕ(n) + 1)t− π

2 − ϕ(n)π
]

2

=
sin
[
(ϕ(n) + 1)t+ π

2

]
+ sin

[
(ϕ(n) + 1)t+ π

2 + ϕ(n)π
]

2

=
cos [(ϕ(n) + 1)t] + cos [(ϕ(n) + 1)t+ ϕ(n)π]

2
.
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By the identities sin(x + π/2) = cosx and cos(x + kπ) = (−1)k cosx, k ∈ Z,
one obtains the following formula

ϕ(n)∑
j=0

(−1)j cos(ϕ(n)− 2j)t =
cos(ϕ(n) + 1)t

cos t
· 1 + (−1)ϕ(n)

2
.

Since ϕ(n) is even for n ≥ 3, the above formula gives

ϕ(n)∑
j=0

(−1)j cos(ϕ(n)− 2j)t =
cos(ϕ(n) + 1)t

cos t
,

which leads to the �nal formula (15).

The formulae (12) and (15) have the following consequence:

Corollary 2. If n ≥ 3, then∫ π

0

Λn(t) · cos(ϕ(n) + 1)t

cos t
dt =

{
pπ

2ϕ(n) if n = 2pm;
π

2ϕ(n) otherwise.

where p is a prime number.

Acknowledgement

Ovidiu Bagdasar's research was supported by a grant of the Romanian
National Authority for Research and Innovation, CNCS/CCCDI UEFISCDI,
project number PN-III-P2-2.1-BG-2016-0333, within PNCDI III.

References

Andreescu, T. and Andrica, D. (2014). Complex numbers from A to...Z. Boston:
Birkhauser.

Bachman, G. (1993). On the coe�cients of cyclotomic polynomials. Providence,
USA: American Mathematical Society.

Bateman, P. T. (1949). Note on the coe�cients of the cyclotomic polynomial.
Bulletin of the American Mathematical Society, 55(12):1180�1181.

400 Malaysian Journal of Mathematical Sciences



On Cyclotomic Polynomial Coe�cients

Bateman, P. T., Pomerance, C., and Vaughan, R. C. (1981). On the coe�cients
of cyclotomic polynomial. Colloquia Mathematica Societatis Janos Bolyai,
34:171�202.

Beiter, M. (1964). The midterm coe�cient of the cyclotomic polynomial fpq(x).
The American Mathematical Monthly, 71(7):769�770.

Beiter, M. (1968). Magnitude of the coe�cients of the cyclotomic polynomials
φpqr(x). The American Mathematical Monthly, 75(4):370�372.

Beiter, M. (1971). Magnitude of the coe�cients of the cyclotomic polynomials
φpqr(x) II. Duke Mathematical Journal, 38(3):591�594.

Carlitz, L. (1966). The number of terms in the cyclotomic polynomial fpq(x).
The American Mathematical Monthly, 73(9):979�981.

Dresden, G. P. (2004). On the middle coe�cient of a cyclotomic polynomial.
The American Mathematical Monthly, 111(6):531�533.

Endo, M. (1975). On the coe�cients of the cyclotomic polynomials. Comment.

Math. Univ. St. Pauli, 23(2):121�126.

Erdös, P. (1946). On the coe�cients of the cyclotomic polynomial. Bulletin of

the American Mathematical Society, 52:179�184.

Erdös, P. and Vaughan, R. C. (1974). Bounds for the r-th coe�cients of cyclo-
tomic polynomials. Journal of the London Mathematical Society, 8(2):393�
400.

Grytczuk, A. and Tropak, B. (1991). A numerical method for the determination
of the cyclotomic polynomial coe�cients. Computational Number Theory,
pages 15�19. https://doi.org/10.1515/9783110865950.15.

Ireland, K. and Rosen, M. (1990). A classical introduction to modern number

theory. New York: Springer-Verlag.

Ji, C.-G. and Li, W.-P. (2008). Values of coe�cients of cyclotomic polynomials.
Discrete Mathematics, 308(23):5860�5863.

Lam, T. and Leung, K. H. (1996). On the cyclotomic polynomial φpq(x). The
American Mathematical Monthly, 103(7):562�564.

Lehmer, D. H. (1966). Some properties of the cyclotomic polynomial. Journal
of Mathematical Analysis and Applications, 42(1):105�117.

Lehmer, E. (1936). On the magnitude of the coe�cients of the cyclotomic
polynomial. Bulletin of the American Mathematical Society, 42(6):389�392.

Malaysian Journal of Mathematical Sciences 401



Andrica, D. & Bagdasar, O.

Maier, H. (1990). The coe�cients of cyclotomic polynomials. In Analytic

Number Theory, volume 85, pages 349�366. Boston: Birkhauser.

Maier, H. (1993). Cyclotomic polynomials with large coe�cients. Acta Arith-

metica, 64(3):227�235.

Maier, H. (1995). The size of the coe�cients of cyclotomic polynomials. In
Analytic Number Theory, volume 139, pages 633�639. Boston: Birkhauser.
https://doi.org/10.1007/978-1-4612-3464-7_22.

OEIS (2018). The on-line encyclopedia of integer sequences. http://oeis.org.

Sándor, J. and Crstici, B. (2004). Handbook of number theory II. Netherlands:
Springer.

Suzuki, J. (1987). On coe�cients of cyclotomic polynomials. Proceedings of

the Japan Academy, Series A Mathematical Sciences, 63(7):279�280.

Vaughan, R. C. (1975). Bounds for the coe�cients of cyclotomic polynomials.
Michigan Mathematical Journal, 21:289�295.

402 Malaysian Journal of Mathematical Sciences


	Introduction
	An integral formula for the coefficients of n
	Applications
	Direct sum of coefficients n(1)
	The mid-term of n(z)
	Alternate sum of coefficients n(-1)


