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ABSTRACT

We discuss the theory of the decomposition of self-dual codes over the

ring Ru,v = F2 + uF2 + vF2 + uvF2, u
2 = 0, v2 = 0, uv = vu. We also

discuss about the equivalence of these self-dual codes theoretically.
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1. Introduction

The decomposition theory for self dual linear codes with automorphism of
odd prime order over �nite �elds was �rst studied by Hu�man Hu�man (1982)
and Yorgov Yorgov (1983). They applied the theory to the study of extremal
self-dual even binary codes of lengths 40 and 48. In Hu�man (1998), the theory
was generalized to codes over Z4 and applied to study Z4 codes of length 24. In
Hu�man (2007, 2009), Hu�man discussed the decomposition of self-dual linear
codes with automorphism of odd prime order over the ring Ru = F2 + uF2,
u2 = 0, and used this decomposition to classify the Lee extremal and Lee
optimal self dual codes over Ru of lengths 9 to 20. One can refer Ankur and
Shum (2020), Ankur and Kumar (2020), Ankur and Kewat (2019) for more
details.

In this paper, our main aim is to discuss the decomposition of self-dual codes
theoretically with automorphism of odd order over the ring Ru,v = F2 + uF2 +
vF2 + uvF2, u

2 = 0, v2 = 0, uv = vu. We also discuss about the automorphism
groups of these codes. At the end we discuss about the equivalence of self-dual
codes with automorphism of odd order over Ru,v. We get similar results as in
Hu�man (2007, 2009) for self dual codes over Ru,v.

As pointed out in Yildiz and Karadeniz (2010a), we can not get a generating
matrix (in the standard form) for a linear code over Ru,v of the form that we
had for a linear code over a �nite �eld and a chain ring. Therefore, the decom-
position theory for self dual codes over Ru,v may not be helpful in classifying
all Lee extremal self dual codes over Ru,v. Though, it can be used to classify
Lee extremal self dual codes over Ru,v which are permutation equivalent to a
certain self dual code with generator matrix in the standard form.

2. Preliminaries

Let Ru,v = F2 + uF2 + vF2 + uvF2, u
2 = v2 = 0 and uv = vu. Note that

Ru,v is not a chain ring, but its ideals can easily be described as

I0 = {0} ⊆ Iuv = uvRu,v = {0, uv} ⊆ Iu, Iv, Iu+v ⊆ Iu,v ⊆ I1 = Ru,v,

where Iu = uRu,v = {0, u, uv, u+ uv},
Iv = vRu,v = {0, v, uv, v + uv},

Iu+v = (u+ v)Ru,v = {0, u+ v, uv, u+ v + uv},
Iu,v = {0, u, v, u+ v, uv, u+ uv, v + uv, u+ v + uv} =< u, v > .
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We note that Ru,v has the maximal ideal Iu,v, hence Ru,v is a local ring.

We �rst de�ne an ordinary inner product 〈·, ·〉 on Rnu,v as de�ned in Yildiz
and Karadeniz (2010a) by

〈x, y〉 =

n∑
i=0

xiyi,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are in Rnu,v. Dual code C
⊥

of C can be de�ned as

C⊥ = {x ∈ Rnu,v | 〈x, y〉 = 0,∀y ∈ C}.

We say that C is self orthogonal if C ⊆ C⊥ and self dual if C = C⊥. Note
that the length of binary self dual codes is always even, but self dual codes over
Ru,v can have odd length.

De�nition 1. A linear code C over the ring Ru,v of length n is an Ru,v -
submodule of Rnu,v.

De�nition 2. Let φ : (F2 + uF2 + vF2 + uvF2)n → F
4n
2 be the map given by

φ(a+ ub+ vc+ uvd) = (a+ b+ c+ d, c+ d, b+ d, d).

It is easy to see that φ is a linear map and takes binary linear code over
Ru,v length n to a binary linear code of length 4n.

De�nition 3. For an element a1 +ub1 + vc1 +uvd1 ∈ Ru,v, we de�ne the Lee
weight-wL as wL(a1+ub1+vc1+uvd1) = wH(a1+b1+c1+d1, c1+d1, b1+d1, d1),
where wH is the Hamming weight for binary codes.

In the ring Ru,v, we have four elements (1, 1 + u, 1 + v, 1 + u + v + uv) of
weight 1, six elements (u, v, u+ v, u + uv, v + uv, u + v + uv) of Lee weight 2,
four elements (1 + uv, 1 + u + uv, 1 + v + uv, 1 + u + v) of weight 3, and one
element uv of Lee weight 4.

3. Code decomposition

Let Ru = F2 + uF2, u
2 = 0 and Ru,v = F2 + uF2 + vF2 + uvF2, u

2 = 0, v2 =
0, uv = vu. We can write Ru,v = Ru + vRu We extend the code decomposition
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over Ru from Hu�man (2007) to codes over Ru,v. Suppose q(X) ∈ F2[X], where
X is an indeterminate. Let (q(X)) be a principal ideal of Ru[X] generated by
q(X) and [q(X)] be a principal ideal of Ru,v[X] generated by q(X). We have
the following.

Lemma 3.1. If q(X) ∈ F2[X], then Ru,v[X]/[q(X)] = Ru[X]/(q(X))⊕
v(Ru[X])/(q(X)).

Proof. Let e(X) + [q(X)] be an element of Ru,v[X]/[q(X)].

We can write e(X) = g(X) + vh(X) uniquely with g(X), h(X) ∈ Ru[X]. An
element of [q(X)] has the form q(X)(r(X)+vt(X)) where r(X), t(X) ∈ Ru[X].

We have e(X) + q(X)(r(X) +vt(X)) = g(X) +vh(X) + q(X)(r(X) +vt(X)) =
g(X) + q(X)r(X) + v(h(X) + q(X)t(X)) implying e(X) + [q(X)] = g(X) +
(q(X)) + v(h(X) + (q(X))).

Also Ru ∩ vRu = {0}. Thus the result follows.

The above Lemma can be applied to q(X) = Xr−1, where r is an odd positive
integer. Let Rr = Ru,v[X]/[Xr − 1] and Rr = Ru[X]/(Xr − 1).

By the above Lemma, Rr = Rr ⊕ vRr. The ring Rr is semisimple.

LetXr−1=
t∏
i=0

mi(X), wheremi(X) is irreducible over F2 withm0(X) = X−1.

We de�ne Ii to be a principal ideal of F2[X]
<Xr−1> generated by (Xr − 1)/mi(X).

Then Rr = (I0 + uI0)⊕ (I1 + uI1)⊕ · · · ⊕ (It + uIt).

Therefore, Rr = (I0 + uI0 + vI0 + uvI0) ⊕ (I1 + uI1 + vI1 + uvI1) ⊕ · · · ⊕
(It + uIt + vIt + uvIt).

Let di be the degree of mi(X), each Ii is an extension �eld of order 2di over
F2.

Also IiIj = {0} when i 6= j, and I0 = {k(1 +X + · · ·+Xr−1)|k ∈ F2} ' F2.

De�ne νb : F2[X]
<Xr−1> −→

F2[X]
<Xr−1> by νb

(
r−1∑
i=0

ciX
i

)
=

r−1∑
i=0

ciX
bi; note that
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νb = νa if b ≡ a (mod r), for b to be relatively prime to r.

The map νb is the identity on I0, permutes I1, · · ·, It, and if νb(Ii) = Ij , νb is
a �eld isomorphism of Ii onto Ij .

The map νb can be extended to Rr by νb(a(X) + uc(X)) = νb(a(X)) +
uνb(c(X)). It is easy to see that νb is a ring automorphism of Rr. The map νb
can be extended to a ring automorphism of Rr by νb(a(X) +uc(X) + vf(X) +
uvg(X)) = νb(a(X)) + uνb(c(X)) + vνb(f(X)) + uvνb(g(X)).

If νb(Ii) = Ij , νb is a ring isomorphism of Ii+uIi+vIi+uvIi onto Ij +uIj +
vIj + uvIj .

Now let C be a linear code of length n over Ru,v with an automorphism σ of
odd prime order r,
σ = (1, 2, · · · , r)(r + 1, r + 2, · · · , 2r) · · · ((c− 1)r + 1, (c− 1)r + 2, · · · , cr),

σ has c cycles and f = n− cr �xed points.

We use the notation Ω1, · · · ,Ωc for the r-cycles and Ωc+1, · · · ,Ωc+f for f =
n− cr �xed points of σ.

For x∈ C, let x|Ωi
denote x restricted to Ωi.

If 1 ≤ i ≤ c, y|Ωi can be viewed as an element a0 +a1Y + · · ·+ar−1Y
r−1 ∈ Rr.

We have yσ|Ωi
= (a0 + a1Y + · · ·+ ar−1Y

r−1)Y .

Let C(σ)={y∈ C |yσ=y}, J = (I1 + uI1 + vI1 + uvI1) ⊕ · · · ⊕ (It + uIt +
vIt + uvIt) and µ(σ)={y∈ C | y|Ωk

∈ J for 1 ≤ k ≤ c and y|Ωk
= 0 for

c+ 1 ≤ k ≤ c+ f}.

Also for 1 ≤ i ≤ t,

let µi(σ) = {y∈ C | y|Ωk
∈ (Ii + uIi + vIi + uvIi) for 1 ≤ k ≤ c and y|Ωj

= 0
for c+ 1 ≤ k ≤ c+ f}.

Theorem 3.1. Let C, C(σ) and µ(σ) be as above. Then C = C(σ)⊕µ(σ) and
µ(σ) = µ1(σ)⊕ · · · ⊕ µt(σ).

Malaysian Journal of Mathematical Sciences 523



Ankur & Kewat, P. K.

Proof. Let v ∈ C and w =
r−1∑
i=0

vσi. Clearly w ∈ C(σ).

Let x = v − ( 1
r )w ∈ C, we now claim x lies in µ(σ). If c+ 1 ≤ i ≤ c+ f, then

w|Ωi
= rv|Ωi

, implying that x|Ωi
= 0 for c+ 1 ≤ i ≤ c+ f .

If 1 ≤ i ≤ c and v|Ωi =
r−1∑
j=0

vijY
j , then w|Ωi = ai(1 + Y + · · ·+ Y r−1),

where ai =
r−1∑
j=0

vij .

So x|Ωi =
r−1∑
j=0

(vij − ( 1
r )ai)Y

j , which when divided by Y − 1 has remainder

r−1∑
j=0

(vij − ( 1
r )ai) = 0.

Hence x|Ωi
∈ J and x∈ µ(σ).

So C = C(σ) + µ(σ).

Note that if x∈ C(σ) then for 1 ≤ i ≤ c, x|Ωi
∈ I0 + uI0 + vI0 + uvI0. Since

I0 + uI0 + vI0 + uvI0 ∩ J = {0}, C(σ) ∩ µ(σ) = {0}.

Thus C = C(σ)⊕ µ(σ).

Let ej(Y ) be the identity of Ij +uIj + vIj +uvIj and e(x) =
t∑

j=1

ej(Y ), which

is the identity of J .

Let x = (x|Ω1
, · · · ,x|Ωc

, 0, · · · , 0) ∈ µ(σ) and for 1 ≤ j ≤ t, let xj =
(x|Ω1

ej(Y ), · · · ,x|Ωc
ej(Y ), 0, · · · , 0), xj ∈ µj(σ) because Ij is an ideal ofRr and

IiIj = {0} when i 6= j. So x =
t∑

j=1

x(j) and µ(σ) = µ1(σ) +µ2(σ) + · · ·+µt(σ).

Since Ii ∩
∑
j 6=i
Ij = {0}. µ(σ) = µ1(σ)⊕ µ2(σ)⊕ · · · ⊕ µt(σ).

Under the correspondence a(1 + Y + . . . + Y r−1) ↔ a for a ∈ Ru,v, it can
be seen that there is an isomorphism between the ring I0 + uI0 + vI0 + uvI0

to Ru,v. A codeword x ∈ C(σ) is constant on each r-cycle.
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Hence x|Ωk
=xk(1 + Y + . . .+ Y r−1),

where xk is in Ru,v for 1 ≤ k ≤ c, and x|Ωk
=xk ∈ Ru,v for c+ 1 ≤ k ≤ c+ f .

The projection of x is de�ned for x ∈ C(σ) as φ(x)= x1 · · · xcxc+1 · · · xc+f ∈
(Ru,v)

c+f . Thus φ(C(σ)) is a code over Ru,v of length (c+f). We can visualize
each µi(σ) as a code of length c+ f over Ii +uIi + vIi +uvIi where the �rst c
components are in Ii+uIi+vIi+uvIi and the last f components are zeros. Let
µi(σ)∗ denote µi(σ) punctured on the f �xed points. Considering µi(σ)∗ is a
code over Ii+uIi+vIi+uvIi, of length c we de�ne µ(σ)∗ = µ1(σ)∗⊕. . .⊕µt(σ)∗

as a code over J of length c. We de�ne a bilinear form 〈·, ·〉J on J c by

〈x, y〉J =
c∑
i=1

xiyi,

where x = (x1, x2, . . . xc) and y = (y1, y2, . . . yc) are in J c. The dual code E⊥
of a code E over J of length c is

E⊥ = {y∈ J c | 〈y, z〉J = 0 for all z ∈ E}.

A code E is self-orthogonal if E ⊆ E⊥ and self-dual if E = E⊥. Here we give
two lemmas that help us in proving the decomposition theorem.

Lemma 3.2. C(σ) is self-orthogonal under 〈·, ·〉J if and only if φ(C(σ)) is
self-orthogonal under 〈·, ·〉.

Proof. If p, q ∈ C(σ), then p = (p1,0, p1,1, . . . , p1,r−1, . . . , pc,0, pc,1, . . . , pc,r−1,
pc+1, . . . , pc+f ) and q = (q1,0, q1,1, . . . , q1,r−1, . . . , qc,0, qc,1, . . . , qc,r−1, qc+1,
. . . , qc+f ), pi,j = pi and qi,j = qi for some pi, qi ∈ Ru,v, for each i with 1 ≤ i ≤ c.

We have 〈p, q〉 = r
c∑
i=1

piqi +
c+f∑
i=c+1

piqi =
c+f∑
i=1

piqi (as r is odd and Ru,v has

characteristic two).

Thus 〈p, q〉 = 〈φ(p), φ(q)〉. Hence C(σ) is self-orthogonal i� φ(C(σ)) is self-
orthogonal.

Let λ be a permutation such that ν−1(Ii+uIi+vIi+uvIi) = (Iλ(i) +uIλ(i) +
vIλ(i) + uvIλ(i)).
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Since ν−1 is the identity on I0, permutes I1, I2, · · · , It. So, such a permutation
exists.

Lemma 3.3. µ(σ) ⊆ µ(σ)⊥ under 〈·, ·〉 if and only if µλ(i)(σ)∗ ⊆ (ν−1(µi(σ)∗))⊥

under 〈·, ·〉J for 1 ≤ i ≤ c.

Proof. First suppose µ(σ) ⊆ µ(σ)⊥.

Choose a ∈ µλ(i)(σ) and b ∈ µi(σ) with associated vectors a∗ ∈ µλ(i)(σ)∗ and
b∗ ∈ µi(σ)∗.

Then 〈aσj , b〉 = 0 for all j with 0 ≤ j ≤ r − 1.

Following in a similar fashion as in Lemma 2.2 of Hu�man (2007) and in Lemma

9.5 of Pless et al. (1998), we get 〈a∗, ν−1(b)∗〉J =
r∑
j=0

〈aσj , b〉X−j .

Therefore, 〈a∗, ν−1(b)∗〉J = 0. Hence µλ(i)(σ)∗ ⊆ (ν−1(µi(σ)∗))⊥.

Conversely, suppose µλ(i)(σ)∗ ⊆ (ν−1(µi(σ)∗))⊥ for all i, with 1 ≤ i ≤ t.

If a∗ ∈ µλ(i)(σ)∗ and b∗ ∈ µi(σ)∗, then 〈a∗, ν−1(b)∗〉J = 0.

Now consider a∗ ∈ µλ(i)(σ)∗ and b∗ ∈ µj(σ)∗ with i 6= j.

Since ν−1(b)∗ has entries in Iλ(j), 〈a∗, ν−1(b)∗〉J is a sum of products xy with
x ∈ Iλ(i), y ∈ Iλ(j).

Note that xy ∈ Iλ(i)Iλ(j) ⊆ Iλ(i) ∩ Iλ(j) = {0}.

This implies that 〈a∗, ν−1(b)∗〉J = 0, for all a∗, b∗ ∈ µ(σ)∗.

Thus 〈a, b〉 = 0 for all a, b ∈ µ(σ). Hence µ(σ) ⊆ µ(σ)⊥.

We now prove the decomposition theorem.

Theorem 3.2. Let C be a code over Ru,v of length n with automorphism σ.
Then the following hold.
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1. If C is self-dual, then φ(C(σ)) is self-dual under 〈·, ·〉, and for 1 ≤ i ≤ t,
µλ(i)(σ)∗ = (ν−1(µi(σ)∗))⊥ under 〈·, ·〉J .

2. Conversely, if φ(C(σ)) is self dual under 〈·, ·〉, and for 1 ≤ i ≤ t, µλi
(σ)∗ =

(ν−1(µi(σ)∗))⊥ under 〈·, ·〉J , then C is self dual.

Proof. If C is self-dual, then by Lemma 3.3, φ(C(σ)) is self-orthogonal.

As φ(C(σ)) is self-orthogonal, from Lemma 2.7 of Yildiz and Karadeniz (2010b),
we have

| C || C⊥ |=| R |n,
|φ(C(σ))| ≤ 4c+f .

(1)

As we can write |(ν−1µi(σ)∗)⊥| = |ν−1((µi(σ)∗))⊥| = |(µi(σ)∗)⊥| = |Ii+uIi+
vIi + uvIi)|c/|µ(σ)∗| as ν−1 is an isomorphism of Rr. Since C is self-dual, by

Lemma 3.4, µλ(i)(σ)∗ ⊆ (ν−1(µi(σ)∗))⊥, and therefore,

|µλ(i)(σ)∗| ≤ |Ii + uIi + vIi + uvIi)|c

|µi(σ)∗|
. (2)

First part will be done if we verify equality in equations (1) and (2) for all
1 ≤ i ≤ t. Now

4cr+f = |C| = C(σ)

t∏
i=1

|µi(σ)∗|. (3)

By using (2),
t∏
i=1

|µi(σ)∗| =
t∏
i=1

|µλ(i)(σ)∗| ≤
t∏
i=1

|Ii+uIi+vIi+uvIi)|c
|µi(σ)∗| . Note

that
t∏
i=1

|µi(σ)∗|2 ≤
∏t
i=1 |Ii+uIi+vIi+uvIi)|c. Thus

t∏
i=1

|µi(σ)∗| ≤
∏t
i=1 |Ii+

uIi + vIi + uvIi)|c/2.

Note that,
∏t
i=1 |Ii + uIi + vIi + uvIi)| = 16(r−1).

Therefore
t∏
i=1

|µi(σ)∗| ≤ (

t∏
i=1

|Ii + uIi + vIi + uvIi)|c/2) = 4(r−1)c. (4)
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We have strict inequality in equation (4) i� we have strict inequality in equa-
tion (2) for some i. From equations (1), (3) and (4) we get 4cr+f ≤ 4c+f4(r−1)c.

But 4c+f4(r−1)c = 4cr+f and so no strict inequality in either (1) or (2) can
exist. This completes the proof of �rst part.

For part 2 arguments of the proof of part 1 can be reversed to prove that
|C| = 4cr+f = 4n.

By Lemma 3.3 and 3.4, C(σ) ⊆ C(σ)⊥ and µ(σ) ⊆ µ(σ)⊥. It is su�cient to
show that C(σ) ⊆ µ(σ)⊥.

Let r ∈ C(σ) and s ∈ µ(σ), we need to show that 〈r, s〉 = 0.

Note that 〈r, s〉 = 〈r′, s′〉 where r? and s? are r and s punctured on the f
�xed points as r and s are zero on these points. If we let r∗ to be r′ viewed as
an element of I0 + uI0 + vI0 + uvI0 and s∗ to be s′ viewed as an element of
J , also

c∑
i=1

r∗i ν−1(s∗i ) =

r−1∑
h=0

< r′σh, s′ > Y −h. (5)

However, r∗i ∈ I0 +uI0 + vI0 +uvI0 and ν−1(s∗i ) ∈ J . because (I0 +uI0 +
vI0 + uvI0)J = {0}, the left hand side of (5) is zero and therefore 〈r′σh, s′〉 =
0 for all h; in particular 〈r′, s′〉 = 0, proving the second part.

We adopt methods developed in Bannai et al. (2003), Hu�man (2007, 2009)
to discuss the equivalence of linear codes over Ru,v of length n. It turns out
that we get similar results for the equivalence of linear codes over Ru,v as
obtained in Hu�man (2007, 2009) for linear codes over Ru. Suppose C is a
linear code over F2 + uF2 + vF2 + uvF2 of length n. Let Mn be the set of
n× n invertible monomial matrices over F2 + uF2 + vF2 + uvF2 and Sn be the
symmetric group on {1, 2, · · · , n} viewed either in cycle form or as matrices in
Mn. De�ne ν ∈ S4n as ν = (1, 2)(3, 4) · · · (4n − 1, 4n). Let CH(ν) denote the
centralizer in H of ν, where H is a subgroup of S4n.

Let M4n be the set of all 4n × 4n invertible monomials over the �eld
F2. We denote the centralizer of ν in M4n by CM4n

(ν). We de�ne a map
φνφ−1 : F

4n
2 → F

4n
2 as (φνφ−1)(x) = (φν)(φ−1(x)) = φ((φ−1(x))ν), for

ν ∈ Mn (where φ is de�ned in De�nition 2). One can see that there ex-
ists a one-to-one correspondence between the centralizers of ν and φMnφ

−1

We now discuss the results for the automorphism of C.
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Theorem 3.3. Let C1 and C2 be linear codes over Ru,v of length n. Then two
codes C1 and C2 are equivalent if and only if there is an element ρ ∈ CS4n(ν)
such that φ(C1)ρ = φ(C2).

The automorphism group of a code C over the ring Ru,v is de�ned by

Aut(C) = {ν′ ∈Mn | Cν′ = C}.

Theorem 3.4. Let C be a linear code over Ru,v. Then Aut(C) ' CAut(φ(C))(ν).

Proof.

Aut(C) ∼= φ(Aut(C))φ−1

= {φν′φ−1 | ν′ ∈Mn, Cν
′ = C}

= {ρ ∈ CM4n
(ν) | φ(C)ρ = φ(C)}

= CAut(φ(C))(ν).

We now discuss about the equivalence of self-dual codes over the ring Ru,v,
for which we discuss the series of maps that will be used.

1. Since σ = (1, 2, · · · , r)(r + 1, r + 2, · · · , 2r) · · · ((c − 1)r + 1, (c − 1)r +
2, · · · , cr), let σj = ((j−1)r+1, (j−1)r+2, · · · , (j−1)r+r) for 1 ≤ j ≤ c.
Thus σ = σ1σ2 · · ·σc. Let W = {σa11 σa22 · · ·σacc | 0 ≤ ai < r, for 1 ≤
i ≤ c}. An action of an element of W to C cycles each of the r-cycles
separately and acts on a |Ωj for 1 ≤ j ≤ c by multiplying by a power of X.

2. De�ne S′c = {φ′ ∈ Sn | φ ∈ Sc} with ((a− 1)r + b)φ′ = (aφ− 1)r + b for
1 ≤ a ≤ c, 1 ≤ b ≤ r, and yφ′ = y for cr + 1 ≤ y ≤ cr + f . Elements
of S′c permute the c r-cycles with the natural order in each r-cycle. So
an element of S′c permutes the r-cycle components of codewords in either
φ(C(σ)) or µi(σ)∗.

3. De�ne S∗f = {φ∗ ∈ Sn | φ ∈ Sf} where yφ∗ = y for 1 ≤ y ≤ cr and
(cr + a)φ∗ = aφ for 1 ≤ a ≤ f . An element of S∗f �xes the elements of
C(σ) and will act trivially on µi(σ)∗.
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4. Let D = {diag(j1, j2, · · · , jn) | ji ∈ Ru,v for 1 ≤ i ≤ n with j(d−1)r+1 =
j(d−1)r+2 = · · · = j(d−1)r+r when 1 ≤ d ≤ c}. When elements of D ap-
plied on the code C scales each coordinate on each r-cycle with a constant
scalar.

5. For any integer j, let jr ≡ j (mod r ) where 0 ≤ jr ≤ r. For 1 ≤ k <
r,de�ne sk to be the permutation in Sn given by ((a − 1)r + 1 + g)sk =
(a − 1)r + 1 + (gk)r for 1 ≤ a ≤ c, 0 ≤ g < r, and jsk = j for
cr + 1 ≤ j ≤ cr + f . After applying sk to C it replace Y by Y k

in each r-cycle, which is nothing but applying νk to each r-cycle. Let
G = {sk | 1 ≤ k < r}.

6. De�ne the normalizer N of σ in Mn by N = {N ∈ Mn | N−1 < σ >
N =< σ >}, where < σ > is the cyclic group generated by σ.

Theorem 3.5. Let C and C1 be codes over Ru,v both having σ in their auto-
morphism groups. Suppose that σ is a Sylow r-subgroup of Aut(C). Then C
and C1 are equivalent if and only if C1 = CM for some M ∈ N . Furthermore,
N =WS′cS

∗
fDG.

Proof. Assume C1 = CM for some M ∈ N , then C and C1 are equivalent.
Conversely assume CR = C1 for some R ∈ Mn. Then R Aut(C1) R−1 =
Aut(C), and therefore < σ > and R < σ > R−1 are both Sylow r-subgroups
of Aut(C). By Sylow's theorem, there exists U ∈ Aut(C) such that UR < σ >
R−1U−1 =< σ > . Hence M = UR ∈ N and CM = CUR = CR = C1, this
proves the converse part.

Next to prove N = WS′cS
∗
fDG. First we prove WS′cS

∗
fDG ⊆ N . If B ∈

WS′cS
∗
fD, B

−1σB = σ. Also s−1
k σsk = σk. Thus B ∈ N . Hence WS′cS

∗
fDG ⊆

N . Now we prove N ⊆ WS′cS
∗
fDG. Let M ∈ N , then M−1σM = σk for

some 1 ≤ k < r implying that M−1σM = s−1
k σsk. Let R = Ms−1

k . Then
R−1σR = σ. Since R = PV for P to be a permutation matrix and V a
diagonal matrix, V −1P−1σPV = σ gives P−1σP = V σV −1. However, P−1σP
is a permutation matrix and V σV −1 is a monomial matrix with the cycle
structure same as σ. Hence we have P−1σP = σ implies that P permutes
the r-cycles of σ among themselves and permutes the �xed points of σ among
themselves and V σV −1 = σ implies V ∈ D. Hence there exist E ∈ S∗f and

F ∈ S′c such that W = PE−1F−1 �xes each �xed point as well as each r-cycle
of σ. However E,F, and P commute with σ, therefore W commutes with σ.
Thus W ∈ W. But M = Tgb = PV gb = WFEV gb ∈ WS′cS

∗
fDG.
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Theorem 3.6. Let C1 and C2 be codes over Ru,v with σ in their automorphism
groups. Suppose that C1 = C1(σ) ⊕ µ1(σ) ⊕ · · · ⊕ µt(σ) and C2 = C2(σ) ⊕
µ′1(σ)⊕ · · · ⊕ µ′t(σ) are the decompositions of C1 and C2. Let M ∈ WS′cS

∗
fDG

where C2 = C1M . Then C2(σ) = C1(σ)M and µ′λ(i)(σ) = µi(σ)M for some
permutation λ of 1, 2, · · · , t.

Proof. The theorem is clear from the points (1) to (5).

4. Conclusion

We consider a Gray map to discuss the theory of the decomposition of self-
dual codes over the ring Ru,v, but as we discussed �nding a generator matrix in
the standard form over the ring Ru,v is not possible, as we found over the �eld
or over the ring F2 + uF2. So the decomposition theory for the self-dual codes
over the ring Ru,v cannot be used to construct Lee extremal self-dual codes,
but one can construct permutation equivalent matrix in the standard form to
�nd Lee extremal self-dual codes.
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