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Abstract

A quadratic stochastic operator (QSO) is frequently acknowledged as the analysis source to
investigate dynamical properties and modeling in numerous areas. Countless classes of QSO
have been investigated since the operator was introduced in 1920s. The study of QSOs is still an
open problem in the nonlinear operator theory field, especially QSOs on infinite state space. We
are interested in the dynamics ofGeometricQSOgenerated by a 2-partition defined on countable
state space. We first show the system of equations formed from defined Geometric QSO with
infinite-dimensional space can be simplified into a one-dimensional setting, corresponding to
the number of defined partitions. The trajectory behavior of such a system is investigated by
using functional analysis approach, where the operator either converges to a unique fixed point
or has a second-order cycle. It is shown that such an operator can be either regular or nonregular
for arbitrary initial points depending on the value of parameters. In this research, we present
two cases, i.e., two different parameters and three different parameters. We display the form
of the fixed point and periodic points of period-2. Moreover, an example for the nonregular
transformation will be provided, where such QSO has 2-periodic points.

Keywords: geometric distribution; quadratic stochastic operator; measurable partition; count-
able set; regularity.
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1 Introduction

The theory of quadratic stochastic operators (QSOs) was first introduced in the early 20th cen-
tury by Bernstein [1]. Since then, QSOs have been frequently applied to understand and describe
dynamical properties and mathematical modeling in diverse fields.

Let us recall some notions, notations, and definitions related to QSOs. Let (X,F) be a measur-
able space, whereX is a state space and F is a σ-algebra, then S(X,F) is the set of all probability
measures on (X,F).

If a state space X = {1, 2, . . . ,m} is finite and the corresponding σ-algebra is the power set
P (X), then the set of all probability measures on (X,P (X)) is called (m−1)-dimensional simplex
with the following form

Sm−1 =

{
x = (x1, ..., xm) ∈ Rm : xi ≥ 0, i = 1, ...,m,

m∑
i=1

xi = 1

}
.

A mapping V : Sm−1 → Sm−1 is known as a quadratic stochastic operator (QSO) with

(V x)k =

m∑
i,j=1

Pij,kxixj , (1)

where

Pij,k ≥ 0, Pij,k = Pji,k,

m∑
k=1

Pij,k = 1 for i, j, k ∈ X, (2)

for i, j, k ∈ X . For a given x(0) ∈ S(m−1), the trajectory x(n) of x(0) under the action of QSO in
(1) is defined by x(n+1) = V (x(n)), where n = 0, 1, 2, . . . . In other words, for any initial point
λ ∈ S(X,F), where V n+1λ = V (V nλ), then {V nλ : n = 0, 1, 2, ...} is the trajectory of such initial
point λ.

Definition 1.1. A quadratic stochastic operator V is called a regular if for any initial point λ ∈ S(X,F)
the limit

lim
n→∞

V n(λ)

exists.

The main problem in the nonlinear operator theory is centered on the study of the asymptotic
behavior of these trajectories which is still not fully solved even in the simplest nonlinear operator
form, i.e., QSO. Over almost a century after being presented by Bernstein as a mathematical solu-
tion to the problem of heredity, QSOs have been widely studied, where different classes of QSO
are introduced and further investigated either on finite or infinite state space inmany publications.
Here we shall consider the QSO defined on infinite state space.

The classes of QSO defined on infinite state space have been originally inspired by the study
of infinite-dimensional quadratic Volterra operators by Mukhamedov in [7]. Thus, the studies of
different classes of QSO on infinite state space specifically in countable state space have grown
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constantly throughout the 21st century. It can be seen from [2] and [5] in which the authors
introduced Poisson, Geometric and mixing both distributions as the probability measure in the
QSO on countable state space.

Further research on Geometric QSOs defined on countable sets are presented in [3] and [4].
The authors constructed the Geometric QSO generated by a 2-partition of singleton and infinite
points, respectively, and investigated the trajectory behavior of such an operatorwith two different
parameters in terms of its regularity. The study showed that such QSO is regular. Generally, a
Geometric QSO generated by a 2-partition on countable state space can be simplified as a QSO
in a one-dimensional simplex studied by Lyubich in [6]. Other than the mentioned QSOs, many
different classes of QSO defined on lower-dimensional simplex have been studied in numerous
publications such as b-bistochastic quadratic stochastic operators, (see [8] and [9]).

Motivated by the study of Geometric QSO in [3] and [4], in this research, we shall study the
dynamics of Geometric QSO generated by 2-partition with two and three different parameters.
Later, we shall discuss the form and type of fixed point for the regular transformation as well as
the form of periodic point for the nonregular case. We also shall present an example to describe
the form of the periodic point of the nonregular transformation for some fixed parameters.

2 Geometric Quadratic Stochastic Operator Generated by 2-Partition

As mentioned previously, we consider nonlinear transformations defined on countable state
space and investigate their dynamics. Let X = 0, 1, 2, . . . be a countable sample space and corre-
sponding σ-algebraF be the power set P (X). A probability measure µ on countable sample space
X is defined as measure µ(k) written as µ(k) of each singleton {k}, k ∈ X . For countable state
space X , a QSO V has the following form:

V µ (k) =

∞∑
i=0

∞∑
j=0

Pij,kµ (i)µ (j), (3)

where µ ∈ S (X,F) and Pij,k satisfies the following conditions:

Pij,k ≥ 0, Pij,k = Pji,k,

∞∑
k=1

Pij,k = 1 for i, j, k ∈ X.

Note that a Geometric distribution, Gr with a real parameter r, 0 < r < 1, is defined on the
countable set X as

Gr (k) = (1− r) rk, k ∈ X.

Definition 2.1. A QSO V (3) is called a Geometric QSO, if for any i, j ∈ X , the probability measure
P (i, j, ·) is the Geometric distribution with parameter r(i, j), where 0 < r(i, j) < 1.

One can define a Geometric QSO generated by 2-partition as follows. Let ξ = {A1, A2} be a
measurable 2-partition of the set X and ζ = {B11, B22, B12} be a corresponding partition of the
Cartesian productX×X , whereBpp = Ap×Ap for p = 1, 2 andB12 = (A1 ×A2)∪ (A2 ×A1). We
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select a family
{
µG
pq : p, q = 1, 2

}
of Geometric distributions with parameters r11 = r1, r22 = r2,

r12 = r3, and if (i, j) ∈ Bpq , we define probability measure P (i, j, A) as follows:

P (i, j, A) = µG
pq (A) if (i, j) ∈ Bpq, p, q = 1, 2, (4)

for A ∈ F . Then for arbitrary λ ∈ S(X,F),

(V λ) (A) =

∫
X

∫
X

P (i, j, A) dλ (i) dλ (j)

=

2∑
p,q=1

∫
Ap

∫
Aq

µG
pq (A) · dλ (i) dλ (j)

=
2∑

p,q=1

µG
pq (A)λ (Ap)λ (Aq).

By using mathematical induction, we will get(
V n+1λ

)
(A) =

∫
X

∫
X

P (i, j, A) dV nλ (i) dV nλ (j)

=

2∑
p,q=1

∫
Ap

∫
Aq

µG
pq (A) · dV nλ (i) dV nλ (j)

=

2∑
p,q=1

µG
pq (A) (V nλ) (Ap) (V nλ) (Aq),

with

(
V n+1λ

)
(Ak) =

2∑
p,q=1

µG
pq (Ak) (V nλ) (Ap) (V nλ) (Aq), (5)

for k = 1, 2.

Assumexk(n) = (V nλ) (Ak) andPij,k = µG
pq (Ak) for (i, j) ∈ Bpq.Then

(
x1

(n), x2
(n), ..., xm

(n)
)
∈

Sm−1 and the system of equations in (5) can be rewritten as follows:

(Wx)k =

2∑
p,q=1

Pij,kxpxq, (6)

for k = 1, 2.

A quadratic stochastic operatorW on S1 has the following form

W :

{
x1
′ = a11x1

2 + 2a12x1x2 + a22x2
2,

x2
′ = b11x1

2 + 2b12x1x2 + b22x2
2,

(7)

where a11 = µG
11 (A1) , a12 = µG

12 (A1) , a22 = µG
22 (A1) , b11 = µG

11 (A2) , b12 = µG
12 (A2) , and

b22 = µG
22 (A2) are arbitrary coefficients with 0 < apq, bpq < 1 for p, q = 1, 2, where apq + bpq = 1.
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2.1 Dynamics of Geometric Quadratic Stochastic Operator Generated by 2-Partitionwith Two
Parameters

The system of equations (7) have been studied in [6]. Assume

∆ = 4 (1− a11) a22 + (1− 2a12)
2
, λ = 1−

√
∆.

Lemma 2.1. For the system of equations (7), if r1 = r2 6= r3, then 0 < ∆ < 2 and |λ| < 1. Hence, x∗1 is
an attracting fixed point.

Proof. If r1 = r2 6= r3, then we have a11 = a22 6= a12 and below is the corresponding system of
equations.

W :

{
x1
′ = a11(x1

2 + x2
2) + 2a12x1x2,

x2
′ = (1− a11)(x1

2 + x2
2) + 2(1− a12)x1x2.

(8)

Since x2 = 1− x1, it follows that x2
′ = 1− x1

′. By substituting x2 = 1− x1 into the first equation
in (8), we may have a quadratic equation with respect to x1. Assume that x1

′ = x1, we may solve
the following quadratic equation:

x1 = 2 (a11 − a12)x2
1 − 2 (a11 − a12)x1 + a11. (9)

By solving the quadratic equation in (9), one can find that the fixed point is unique and belongs
to the interval (0, 1) with the following form:

x∗1 =
2 (a11 − a12) + 1−

√
∆

4 (a11 − a12)
.

Note that ∆ is the discriminant of the quadratic equation in (9), where a11 = a22. It is easy to
observe that one will get 0 < ∆ < 2 since a11, a12 ∈ (0, 1).

Remark 2.1. Let x∗ be a fixed point and f ′ (x) be the first derivative of a function f (x). Then, the following
statements hold true:

1. if |f ′ (x∗)| < 1, then x∗ is an attracting fixed point,

2. if |f ′ (x∗)| > 1, then x∗ is a repelling fixed point.

After simple algebra, we have

f ′ (x1) = 4 (a11 − a12)x1 − 2 (a11 − a12) ,

such that λ = f ′ (x∗1) and 1−
√

2 < λ < 1. Due to Remark 2.1, one can conclude that the quadratic
equation in (9) has an attracting fixed point, (i.e. stable unique fixed point). This completes the
proof.

2.2 Dynamics ofGeometricQuadratic StochasticOperatorGeneratedby 2-PartitionwithThree
Parameters

Lemma 2.2. For the system of equations (7), if r1 6= r2 6= r3, then 0 < ∆ < 5 and |λ| < 1 when
0 < ∆ < 4, and |λ| > 1 when 4 < ∆ < 5. Hence, x∗1 is a repelling fixed point.
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Proof. If r1 6= r2 6= r3, then we have a11 6= a22 6= a12. Referring to the system of equations (7) and
assuming x1

′ = x1, one may have a quadratic equation with respect to x1 as follows:

x1 = (a11 − 2a12 + a22)x2
1 + 2 (a12 − a22)x1 + a22. (10)

According to Lyubich in [6], the quadratic equation (10) has a unique fixed point that belongs to
the open interval (0, 1) in the following form:

x∗1 =
−2 (a12 − a22) + 1−

√
∆

2 (a11 − 2a12 + a22)
,

where ∆ is the discriminant of the quadratic equation in (10). Given the fact that 0 < aij < 1 for
i, j = 1, 2, it is evident that 0 < ∆ < 5.

Let
f ′ (x1) = 2 (a11 − 2a12 + a22)x1 + 2 (a12 − a22) ,

be the first derivative of the right-hand side of equation (10), then we have λ = f ′ (x∗1). One can
easily verify that if 0 < ∆ < 4, then λ < 1 and x∗1 is an attracting fixed point. Meanwhile, if
4 < ∆ < 5, then λ > 1 and x∗1 is a repelling fixed point. Thus, the proof is complete.

2.3 Form of Point of Nonregular Geometric Quadratic Stochastic Operator with Three Param-
eters

Based on the above lemmas, one can say that only the Geometric QSO generated by 2-partition
with three different parameters may have a repelling fixed point. Recall that a repelling fixed
point indicates that all trajectories of the operator in (7) tend to a cycle of second-order except
when x(0)

1 = x∗1. Hence, we can find the periodic points of period 2 of the right-hand side of the
equation in (10) by considering the following function:

ϕ2 (x1) = ϕ (ϕ (x1)) = x1, (11)

where ϕ (x1) is the function on the right-hand side of the equation in (10).

Let
ϕ (x1) = Ax1

2 +Bx1 + C, (12)

where A = a11 − 2a12 + a22, B = 2 (a12 − a22), and C = a22. Then,

ϕ2 (x1) = A
(
Ax1

2 +Bx1 + C
)2

+B
(
Ax1

2 +Bx1 + C
)

+ C

= A3x1
4 + 2A2Bx1

3 +
(
2A2C +AB2 +AB

)
x1

2 +
(
2ABC +B2

)
x1

+AC2 +BC + C.

To solve the equation in (11), one may get(
A2x1

2 + (AB +A)x1 +AC +B + 1
) (
Ax1

2 +Bx1 + C − x1

)
= 0. (13)

Consequently, one can find the roots for the following quadratic equations:
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A2x1
2 + (AB +A)x1 +AC +B + 1 = 0, (14)

Ax1
2 +Bx1 + C − x1 = 0. (15)

After simple algebra, the quadratic equation in (14) has the following roots:

x∗1,a =
− (B + 1) +

√
B2 − 2B − 3− 4AC

2A
,

x∗1,b =
− (B + 1)−

√
B2 − 2B − 3− 4AC

2A
.

Meanwhile, the roots for the quadratic equation in (15) are as follows:

x∗1,c =
− (B − 1) +

√
(B − 1)

2 − 4AC

2A
,

x∗1,d =
− (B − 1)−

√
(B − 1)

2 − 4AC

2A
.

Onemay observe that x∗1,c and x∗1,d are the fixed points of the quadratic equation in (10), where
x∗1,c /∈ (0, 1), x∗1,d ∈ (0, 1), and x∗1,d = x∗1. Thus, x∗1,a and x∗1,b are the periodic points of period 2 of
the system of equations in (7).

Lemma 2.3. If 4 < ∆ < 5, then the operator (7) has 2-periodic points,
(
x∗1,a, x

∗
2,a

)
and

(
x∗1,b, x

∗
2,b

)
,

which are different from the fixed point (x∗1, x
∗
2).

Proof. It can be seen from |ϕ′ (x1
∗)| =

∣∣∣1−√∆
∣∣∣ that if 4 < ∆ < 5, then x∗1 is a repelling fixed point

of ϕ (x1) and the function ϕ2 (x1) has the fixed points x∗1, x∗1,a, and x∗1,b that belong to the interval
(0, 1), i.e., ϕ2

(
x∗1,a

)
= x∗1,a, and ϕ2

(
x∗1,b

)
= x∗1,b. Since x2 = 1 − x1, it is easy to obtain x∗2, x∗2,a,

and x∗2,b. This completes the proof.

3 Regularity of Geometric Quadratic Stochastic Operator Generated by
2-Partition

Based on Definition 1.1, the regularity of a QSO is determined by the existence of the limit of
such an operator. In this section, we provide theorems to describe the trajectory behavior of the
Geometric QSO generated by 2-partition with two and three different parameters in terms of its
regularity.

Theorem 3.1. [6] If 0 < ∆ < 4, then a one-dimensional QSO (7) is a regular, and if 4 < ∆ < 5,
then there exists a cycle of second-order and all trajectories tend to this cycle except the stationary trajectory
starting with fixed point.
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Let
(
ϕ2
)′

(x1) be the first derivative of the function ϕ2 (x1), where

(
ϕ2
)′

(x1) = 2A
(
Ax2

1 +Bx1 + C
)

(2Ax1 +B) +B (2Ax1 +B) . (16)

By substituting x∗1,a and x∗1,b into the function in (16), it will yield(
ϕ2
)′ (

x∗1,a
)

=
(
ϕ2
)′ (

x∗1,b
)

= 4a22 (a11 − 1)− 4a12 (a12 − 1) + 4 = 5−∆.

Sincewehave 4 < ∆ < 5, thenwemayobtain |5−∆| < 1. This leads to the fact that
∣∣∣(ϕ2

)′ (
x∗1,a

)∣∣∣ <
1 and

∣∣∣(ϕ2
)′ (

x∗1,b

)∣∣∣ < 1. Hence, this shows that the fixed points x∗1,a and x∗1,b of the function
ϕ2 (x1) are attracting.

Theorem 3.2. Let 0 < ∆ < 5.

1. If 0 < ∆ < 4, then there exists an open set U ⊂ S1 such that x∗ ∈ U and for any x(0) =(
x

(0)
1 , x

(0)
2

)
∈ U we have

lim
n→∞

Wn
(
x

(0)
1 , x

(0)
2

)
= (x∗1, x

∗
2) .

It follows that such an operatorW is a regular transformation.

2. If 4 < ∆ < 5 and a12 <
1
2 −

√
1− (1− a11) a22, then there exists an open set U ⊂ S1 such that

x∗a,x
∗
b ∈ U and for any x(0) =

(
x

(0)
1 , x

(0)
2

)
∈ U we have

lim
n→∞

Wn
(
x(0)

)
=


x∗a, if x(0)

1 < x∗1 and n = 2k + 1 or x(0)
1 > x∗1 and n = 2k,

x∗, if x(0)
1 = x∗1,

x∗b , if x(0)
1 < x∗1 and n = 2k or x(0)

1 > x∗1 and n = 2k + 1.

3. If 4 < ∆ < 5 and a12 >
1
2 +

√
1− (1− a11) a22, then there exists an open set U ⊂ S1 such that

x∗a,x
∗
b ∈ U and for any x(0) =

(
x

(0)
1 , x

(0)
2

)
∈ U we have

lim
n→∞

Wn
(
x(0)

)
=


x∗a, if x(0)

1 < x∗1 and n = 2k or x(0)
1 > x∗1 and n = 2k + 1,

x∗, if x(0)
1 = x∗1,

x∗b , if x(0)
1 < x∗1 and n = 2k + 1 or x(0)

1 > x∗1 and n = 2k,

where x∗ = (x∗1, x
∗
2) is fixed point and x∗a =

(
x∗1,a, x

∗
2,a

)
, x∗b =

(
x∗1,b, x

∗
2,b

)
are periodic points

described above. It follows that such an operatorW is a nonregular transformation.

Proof. 1) For 0 < ∆ < 4, it can be seen from ϕ′ (x∗1) = 1−
√

∆ that x∗1 = −2(a12−a22)+1−
√

∆
2(a11−2a12+a22) ∈ (0, 1)

is an attracting hyperbolic fixed point. Therefore, x(n)
1 will converge to x(∗)

1 when 0 < ∆ < 4. A
trajectory of the operator (7) on the invariant set γ =

{
(x1, x2) ∈ S1 : x1 = x∗1

}
is as follows:

x(n) =
(
x

(n)
1 , 1− x(n)

1

)
,

where x(n)
1 satisfies the equality

x
(n+1)
1 = (a11 − 2a12 + a22) (x∗1)

2
+ 2 (a12 − a22)x∗1 + a22. (17)
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It follows from (17) that lim
n→∞

x
(n)
1 = x∗1. Therefore, lim

n→∞
Wn

(
x

(0)
1 , x

(0)
2

)
= (x∗1, x

∗
2) and the oper-

atorW is regular.

2) Next, when 4 < ∆ < 5, it is easy to observe from |ϕ′ (x1
∗)| =

∣∣∣1−√∆
∣∣∣ that x1

∗ is a repelling
hyperbolic fixed point of ϕ (x1). Additionally, when 4 < ∆ < 5, the fixed points x∗1,a and x∗1,b of
function ϕ2 (x1) are attracting, which follows from

∣∣∣(ϕ2
)′ (

x∗1,a
)∣∣∣ < 1 and

∣∣∣(ϕ2
)′ (

x∗1,b

)∣∣∣ < 1.

For the case where 4 < ∆ < 5, we shall consider all possible cases on b. We use the fact that we
will obtain 4 < ∆ < 5, if and only if a11 ∈

[
0, 1

4

]
, a22 >

3
4(1−a11) , and a12 <

1
2 −

√
1− (1− a11) a22

or a12 >
1
2 +

√
1− (1− a11) a22. Now we show the trajectory behavior of the operator W in (7)

when 4 < ∆ < 5 and a12 <
1
2 −

√
1− (1− a11) a22.

Define the operatorW : [0, 1]→ [0, 1]:

W :

{
x′1 = a11x

2
1 + 2a12x1x2 + a22x

2
2

x′2 = (1− a11)x2
1 + 2 (1− a12)x1x2 + (1− a22)x2

2.
(18)

The operatorW has the following invariant sets:

γ =
{

(x1, x2) ∈ S1 : x1 = x∗1
}

and
Γ =

{
(x1, x2) ∈ S1 : x1 = x∗1,a or x1 = x∗1,b

}
.

Note that if x(0) ∈ γ, then lim
n→∞

x
(n)
1 = x∗1. If x(0) ∈ Γ, then we will get lim

n→∞
x

(2n)
1 = x∗1,a and

lim
n→∞

x
(2n+1)
1 = x∗1,b whenx(0)

1 = x∗1,a. Consequently, wehave lim
n→∞

x
(2n)
1 = x∗1,b and lim

n→∞
x

(2n+1)
1 =

x∗1,a when x(0)
1 = x∗1,b for n = 0, 1, 2, . . . . This is due to the fact that x∗1,a and x∗1,b are the attracting

fixed points of the function f2 (x1).

Now we shall consider x(0) ∈ S1\γ. This leads us to two cases, where x(0)
1 < x∗1 and x(0)

1 > x∗1.
One may observe that x∗1,b < x∗1 < x∗1,a when a12 <

1
2 −
√

1− (1− a11) a22. Hence, if x(0)
1 < x∗1, we

will have ϕ
(
x

(0)
1

)
> x∗1 and ϕ2

(
x

(0)
1

)
< x∗1. Since x∗1,a and x∗1,b are attracting fixed points of the

functionϕ2 (x1), thenwemay conclude that lim
n→∞

ϕ2n
(
x

(0)
1

)
= x∗1,b and lim

n→∞
ϕ2n+1

(
x

(0)
1

)
= x∗1,a

for n = 0, 1, 2, . . . .

Similarly, if x(0)
1 < x∗1, one will obtain ϕ

(
x

(0)
1

)
< x∗1 and ϕ2

(
x

(0)
1

)
> x∗1. This gives us

lim
n→∞

ϕ2n
(
x

(0)
1

)
= x∗1,a and lim

n→∞
ϕ2n+1

(
x

(0)
1

)
= x∗1,b for n = 0, 1, 2, . . . .

3) As we have established the previous proof, then it is easy to show the trajectory behavior of
the operator W when 4 < ∆ < 5 and a12 >

1
2 +

√
1− (1− a11) a22. Recall that if x(0) ∈ γ, then

lim
n→∞

x
(n)
1 = x∗1. Next, when a12 >

1
2 +
√

1− (1− a11) a22, we have x∗1,a < x∗1 < x∗1,b. By considering

the case when x(0)
1 < x∗1, one can conclude that lim

n→∞
ϕ2n

(
x

(0)
1

)
= x∗1,a and lim

n→∞
ϕ2n+1

(
x

(0)
1

)
=

x∗1,b for n = 0, 1, 2, . . . as ϕ
(
x

(0)
1

)
> x∗1 and ϕ2

(
x

(0)
1

)
< x∗1.
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We handle the case, where x(0)
1 > x∗1 similarly. Substituting x(0)

1 > x∗1 into the function ϕ,
one may obtain ϕ

(
x

(0)
1

)
< x∗1 and ϕ2

(
x

(0)
1

)
> x∗1. Therefore, lim

n→∞
ϕ2n

(
x

(0)
1

)
= x∗1,b and

lim
n→∞

ϕ2n+1
(
x

(0)
1

)
= x∗1,a for n = 0, 1, 2, . . . .

It is shown that the operatorW in (7) is nonregular when 4 < ∆ < 5. The proof is complete.

Next, we provide an example for a QSO in (7) having periodic points of period 2 in a one-
dimensional simplex.

Example 3.1. Let A1 = {0} and A2 = {1, 2, ...} be a measurable 2-partition for the Geometric QSO
generated by 2-partition. For any 7

8 < ε < 1, we define r1 = ε, r2 = 1
20ε , and r3 = 1

10ε. Then, we will
have

ϕ (x1) = (−ε)x2
1 +

(
1

10
ε

)
x1 +

(
1− 1

10
ε

)
,

where ∆ε = − 39
100ε

2 + 19
5 ε + 1. One can easily observe that 4 < ∆ε < 5. Then, the above function will

have a fixed point, x∗1 = 10
√

∆ε+ε−10
20ε ∈ (0, 1). Next, we shall search for the periodic points of period 2 by

considering the function ϕ2 (x1). By solving the quartic equation as in (11), one will get the fixed points
of the function ϕ2 (x1) that belong to the interval (0, 1) with the following form:

x∗1 =
10
√

∆ε + ε− 10

20ε
,

x∗1,a =
ε+ 10 + 10

√
∆ε − 4

20ε
,

x∗1,b =
ε+ 10− 10

√
∆ε − 4

20ε
.

Hence, in this case, we obtain that Fix (Wε) =
{(

10
√

∆ε+ε−10
20ε , 10

√
∆ε+19ε−10

20ε

)}
and Per2 (Wε) ={(

ε+10+10
√

∆ε−4
20ε , 19ε+10+10

√
∆ε−4

20ε

)
,
(

ε+10−10
√

∆ε−4
20ε , 19ε+10−10

√
∆ε−4

20ε

)}
for any 7

8 < ε < 1.

Given that such an operator W in (7) has a unique fixed point, i.e., |Fix (W )| = 1 for any
initial point x(0), where 0 < ∆ < 4, one can conclude that the trajectory behavior of the operator
converges to a stable fixed point. This demonstrates that such an operator is regular. Meanwhile,
the existence of the repelling fixed pointswhen 4 < ∆ < 5 for a quadratic equation in (10) suggests
that there exists a second-order cycle for the operator in (7). Based on Definition 1.1, if the strong
limit of such an operator does not exist, then it is not regular.

4 Conclusions

As mentioned in the introduction, the quadratic stochastic operator (QSO) generated by a 2-
measurable partition defined on countable state space can be reduced into a one-dimensionalQSO.
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This paper presented the dynamics of the Geometric QSO generated by a 2-measurable partition
by analyzing the formed quadratic equation (10)while considering two cases, i.e., (i) two different
parameters, where r1 = r2 6= r3 and (ii) three different parameters, where r1 6= r2 6= r3. It is
proven that such an operator can be either regular demonstrated by the existence of an attracting
unique fixed point or nonregular when there exists a repelling fixed point, where such an operator
shows a cycle of second-order. The form of the fixed point and the 2-periodic points can be found
by solving the quartic equation in (12).

Observing the obtained result makes it possible to study the QSO on countable state space
with more partitions in future research. A complete understanding of such QSOs on infinite state
space would significantly contribute to mathematical genetics and dynamical systems.
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