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Abstract

This paper considers systems of linear Fredholm-Volterra integral equations using a modified
homotopy analysis method (MHAM) and the Gauss-Legendre quadrature formula (GLQF) to
find approximate solutions. Standard homotopy analysis method (HAM), MHAM, and optimal
homotopy asymptotic method (OHAM) are compared for the same number of iterations. It is
noted from the chosen examples that MHAM with GLQF is comparable with standard HAM and
OHAM. In all cases, MHAM with GLQF approaches exact solutions, where residual rapidly
converges to zero when the number of iterations and quadrature nodes increases. The HAM
developed in this paper is better than the HAM developed by Shidfar & Molabahrami in “Solving
a system of integral equations by an analytic method”.

Keywords: homotopy analysis method, Gauss-Legendre quadrature formula, approximate so-
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1 Introduction

The homotopy analysis method (HAM) was first introduced by Liao [9] in his PhD thesis, where
he successfully applied it to nonlinear problems. A systematic and clear exposition on HAM is
given in Liao’s work [2]. After the publication of that work, a number of researchers have success-
fully applied this method to various nonlinear problems in science and engineering. For example,
see [10] discussed the non-linear problems, [11, 7] discussed fluid dynamics, [12] discussed the
non-linear problem and comparison between HPM and HAM, [1] elaborated on KdV equations,
[14] discussed non-linear differential problem, and [3] elaborated on engineering and biology.
The HAM contains an auxiliary parameter 7, which provides us with a simple way to adjust and
control the convergence region and the rate of convergence of the series solution. Moreover, em-
ploying the so-called A-curve, it is easy to find the valid regions of 7 to gain a convergent series
solution. The main aim is to analyze the HAM from a mathematical point of view utilizing some
basic nonlinear and linear problems of the system of integral equations and hence show a pre-
sentable comparison by obtaining the exact solution of the homotopy equations. On the other
hand, employing the convergence-control parameter can always be avoided in the HAM. Thus,
HAM is an explicit semi-analytic solution of linear and nonlinear problems.

In numerical analysis, a quadrature rule approximates the definite integral of a function, usu-
ally stated as a weighted sum of function values at specific points within the domain of integration.
An n-point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule con-
structed to give exact results for polynomials of degree 2n — 1 or less, employing a suitable choice
of nodes {x;} and weights {w;}, fori € {1,2,...,n}. Legendre polynomials P, (z) are orthogonal
polynomials on the interval [—1, 1] with unit weight. The Gauss-Legendre quadrature formula
(GLQF) is a special case of Gaussian quadrature that allows us to approximate a function with
known asymptotic behavior at the edges of the integration interval. Applications of the GLQF can
be found in many references. For example, [4] derived error estimates for the Gauss Legendre and
the Gauss-Chebyshev quadrature formulas for analytic functions, [5] discussed Gauss-Legendre
quadrature formula (GLQF) extended to the kernel integrals of two variables and proved the
convergence of GLQF, while [8] discussed numerous methods on integration problems including
GLQF.

Consider a general system of linear Fredholm-Volterra integral equations (FVIEs) of the form

U(z) = G(x) +A1/ Ki(z,t)U(t) dt + As /f Koz, t)U(t) dt, (1)
where
U(e) = (ur(2), ua(@), ... un ()
G(z) = (91(2), 92(2), - - -, gn(2)) , (2)

r(x,t) = (krij(z,t),r € {1,2}, 4,5 € {1,2,...,n},

where z € R denotes the independent variable; g;(z) are known analytic functions, and u; (z) are
unknown functions to be determined. For g;(z) = 0, (1) reduces to the homogeneous equation,
and the theory of eigenvalues and eigenfunctions can be applied.

Ghazanfari & Yari [6] considered (1) with Ay = 0, and applied optimal homotopy asymp-

totic method (OHAM) to obtain an approximate solution. This work showed the effectiveness
of OHAM for (1) and provided easy tools to control the convergence region of approximating
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solution series, wherever necessary. The results of OHAM were compared with the homotopy
perturbation method and the Taylor series expansion method. Shidfar & Molabahrami [13] pro-
posed HAM for solving systems of linear and nonlinear Volterra and Fredholm integral equations.
Using HAM, it is possible to find the exact solution or approximate solution for the problem. The
efficiency of the approach was illustrated by applying the procedure to several examples.

This paper is arranged in the following manner. In Section 2, we present the standard HAM
and modified HAM. Section 3 describes the implementation of standard HAM and modified HAM
for the problem (1)—(2). In Section 4, a GLQF is developed for kernel integration. Section 5 deals
with examples and shows a comparison of the proposed method with standard HAM and OHAM.
Finally, some conclusions and acknowledgements are given in Section 6.

2 Analysis of the HAM

To apply HAM to the i-th equation of (1), let us rewrite it as follows:

n

uile) = gi(@) + 3

j=1

b T
A / kil)ij(l‘,t)uj‘(t) dt + )\2/ kz)ij(.’L‘,t)Uj(t) dt‘| ,1 € {1, 2, 7n} 3)
a a

The operator form of (3) is

N; [Uz(l)] = gi(m)/i € {132a ...,TL}, (4>

where

n

b x
N; [us(@)] = wi(z) = 3 {/\1 / vy (O (1) dt + o / oo (2 )y (2) .

Jj=1

In general, the operator IV, in (4) can be nonlinear or singular.

For the sake of clarity, we will first present a brief description of the standard HAM. From it,
we will derive the description of the algorithm of modified HAM (MHAM).

To generalize the traditional homotopy method, Liao [9] constructed the so-called zeroth-order
deformation equations,

(1 —=q)L[9pi(x,q) — uio(x)] = gh {N; [¢i(x,q)] — gi()}, (5)

where ¢ € [0,1] is an embedding parameter, & is a nonzero auxiliary parameter, L is an auxil-
iary linear operator, u; ¢ (x) are initial guesses of exact solutions u;(x), and ¢;(z, ¢) are unknown
functions.

Obviously, when ¢ = 0 and g = 1, then

¢i(2,0) =u;0(x) and ¢;(z,1) = u;(z)
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hold, respectively. Thus, as ¢ increases from 0 to 1, the function ¢;(z, q) varies from the initial
guess u; o(z) to the solution u;(x)—this is called deformation. Indeed, expanding ¢;(x, ¢) in Taylor
series with respect to ¢, one has

(2, q) = wio(x) + Y uin(x)q", (6)
k=1
where L o
ui p(x) = R W N (7)

As long as the auxiliary linear operator L, the initial guess u; o, the auxiliary parameter #, and the
auxiliary functions are properly chosen, the series (6) converges at ¢ = 1. Then, one has

$i(x,1) = wi(@) = wio(@) + Y win(@), (8)

which must be one of the solutions of the original system of nonlinear equations (4).

Based on (7), the governing equation can be deduced from the zeroth-order deformation equa-
tions (5). To do this, let us define the vectors

Ujp = (ui,o(x), Uz‘71(3}), - ,uim(l‘)) .

Differentiating (5) m times with respect to the embedding parameter ¢, then setting ¢ = 0, and
finally dividing by m!, we have the so-called m-th order deformation equation,

L [ui,m(‘r) - Xmui,mfl(x)] = hRi,m (ﬂi,mfl) ) (9)
where . g1 (N
Ry [ ()] = e { z[g;(jﬁ)] — gi(r)} . (10)
q=
and
0 ifm<1,
Xm = {1 ifm > 1. (1)

The modified form of the HAM can be obtained by the assumption that the function g;(x) can
be split into n terms, namely

gi(x) = sio(x) + si1(x) + - - + sin(x).

Expanding g;(z) = ¢:i(z, ¢) into powers of the embedding parameter g, we have

n

pi(,q) = s10(2)q° + si1(2)q" + -+ sia(2)0" = D 50 4(). (12)
j=0
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From (5) and (12), the new zeroth-order deformation equation has the form

(1 =)L [pi(x,q) — uio(x)] = gh{Ni[¢i(x,q)] — vi(z,9)},

and the m-th order deformation equation is

L [t () = XmWim—1(2)] = AR m (Uim—1) (13)

here 0" (Nigi(,0)) — oi(,0)}
_ 1 me Ni i\, q)] — PilT, q
, — = . 14
Rz,nL [uz,m 1(37)] (m — 1)| aqm71 o ) ( )
and ., is defined by (11).
3 Implementation of Standard HAM and Modified HAM
For (3),let L =T and m = 1. Then (9) becomes
ui1(x) = hRi 1 (U0), (15)
where
Ri1(ti0) = {Ni[pi(z,q)] — gi(2)} =g -
We can readily see that ¢;(, q)|,_o = [ui0(2) + 232 uik(2)q"] =0 = Uio(z), then
n b x
Ri,l (ai,O) = ui70($) — gZ(CU) - Z l)\l / kl,ij (x,t)uj,o(t) dt + )\2/ kQ,ij (x, t)ijo(t) dt] . (16)
j=1 @ a
Since u; o(z) = gi(z), from (15) and (16) it follows that
n b T
uiyl(x) = —hz [)\1 / Kl’ij(fﬂ,t)gj(t) dt + )\2/ Kgyij(x,t)gj(t) di;| . (17)
=1 a a
On the other hand, for m > 1, we have
Ui,m(x) = ui’m,l(x) + hRi’m (’ﬁi’m,1) . (18)
Let m = 2, then, from (10) we obtain
0
Rio = - [N;|¢i(z,q)] — gi(x
2= gy Nl = 0]
0 - ’
= aq{dﬁi(%Q) —gi(r) =) [M/ Kiij(z,t)¢;(x, q) dt (19)
=1 @

+ /\2 /I Kg,ij(l‘,t)(bj(l‘,q) dt] }

q=0
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It is not difficult to see that d%d’z‘ (x, q)‘ = u;,1(x). Therefore, from (18) and (19), it follows that
0

win(@) = (1+ Ryuia (x hi[xl/ Ko t)ujl()dt+)\2/ Koy(a t)ujl()dt]

Jj=1
By continuing this procedure, we obtain

n b
tim () = (1 +h)tim—1 () = hz [)\1/ Kyij (@, t)ujm-1(t) dt

(20)

T

+ )\2/ Kg’ij(x,t)uj’m,l(t) dt‘| ,m Z 2.
a

Egs. (17) and (20) are the application of the standard HAM for problem (3).

Now, let us implement the MHAM for problem (3). To do this, the given function g; () is split
into n terms:

gi(x) = s;0(x) + si1(x) +- - + sin(2),

and the function ¢;(x, ¢) is constructed in the form

ei(z,q) = 5i0(1)¢° + si1(2)q" + -+ + 50 Zq sij(@

From (13) and (14), for m = 1, it follows that

w1 (v) = IRy 1 [t 0()] = R {N; [¢i(x, q)] — pi(z,0)} =

h{d)i(xq —pi(z,q) Z[ /kmfﬂt)%(tfﬂd

Jj=1

+ A2 /w kaij(x,t)g;(t, q) dt”

q=0

Since

¢i(2,q)] ;= = |wi0(@) + Zui,k(x)qk] =u;0(z) = gi(2),
k=1 q=0

n
pi(, @)l =g = |si0(@) + qusw-(x)] = si,0(2),
j=1
q

=0

upon substituting these into (21), we get

n

b T
Ui71(l‘) = ﬁ{gz(l‘) - S@o(I) - Z [)\1/ kl,ij (I,t)gj (t) dt + )\2/ kgﬂ'j (lZJ,t)gj (t) dl;| } (22)

j=1
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Let m = 2. Then, from (13) and (14), and taking into account (11), we obtain

0

ui2(7) = ui1 () + hRi 2 [Ui 1] = wii(z) + haT; [N [pi(%,q)] — wi(z,q)]

9 b
= u;,1(z) + h(’Tq [@(%Q) -\ / Z kvij(x,t)p;(t,q) dt

a =1

q=0

- )\2/ Zk2,ij($>t)¢j(t7Q) dt — pi(, Q)l
a =1

q=0
It is known that

) o [ >

67¢'L(xvq) = 67 U0 +quuzk ‘| —uz,l(m)u
q q=0 q L k=1 =0

0 0 LI

87901(3;7q) = 87 54,0 +qusl,J = 8171(1‘)
q g=0 q I = oo

Taking these into account, we have

n

b T
ui,g(a:) = (1 + h) Ui,l(x) - hsi71(33) - hz [)\1 / kl,ij (x,t)uj’l(t) dt + )\2/ kg,ij (m,t)uj,l(t) dt‘| .

j=1

By continuing this procedure for any ¢ € {1,...,n} and any m > 1, we get
n b x
uiyl(x) = h{gl(x) — Si’o(l') — Z [)\1 / klﬁij(l',t)gj(t) dt + )\2/ kaij(CL',i)gj(t) dt‘| }
j=1 a a

Uim () = (1 + 1) Ui m—1(2) — NSim—1( FLZ[ / k1,ij(z, €)ujm—1(t) dt
+)\2/ Koij (2, )t m 1 (t) di|, +1, (23)

n b
ui,m( ) (1+h)uzm 1 hZ[Al/ kl K¥ l’ t U] m— 1(t) dt

j=1

+>\2/ kglj(.fct’u]m 1 dt],m>n+l

It should be emphasized that, for m > 1, the families {u; ,,(x)} are governed by equations (9)
and (13), and the series > °_  u; ,,, converge to the exact solutions with different rates based on

the choice of the initial guesses.
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4 Gauss-Legendre Quadrature Formula

The Gauss-Legendre quadrature formula (GLQF) is a higher order quadrature formula given by
Kythe & Schiferkotter [8] in the form

n+1

/ f(r dT—sz (7i) + Rny1(f), (24)

where
2

(1—72) [Py ()]

(25)

w; =

with Z?Ill w; = 2. Itis exact for polynomials of degree 2n — 1 if weights w; are defined by (25),
and collocation points 7; are chosen as the roots of Legendre polynomial P,,11(s), i.e.

Poya(ri) =0, (26)

forie {1,2,...,n+1}.
The error term of the GLQF (24) is given by

2273 [(n + 1)1]*

Bu(f) = (2n +3)[(2n + 2)]

S (g,

for—1<¢< 1.

The GLQF (24) can be applied to the kernel integral on an interval [a, b], as described by Eshku-
vatov et al. [5]. For Fredholm and Volterra integral we have, respectively,

b n+1
—a
/Kl(syt) Zwlk tlk +R( )
’ s—a ' (27)
/ Ka(s, )al - ZWWc z(ta,r) + Rn(z),
where s € [a, ], and
b—a b+a
Wi k() = k1(s, t1 k)W, iy = 7 e,
s-a  _sta (28)
WZ,k(S) = k2(87t2’k)’U)k, t2,k — Trk + 5

and ry, are the roots of the Legendre polynomial defined by (26). Eqs. (27) and (28) are crucial in
computing the kernel integrals.
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Using GLQF (27) and (28), we can obtain the standard HAM for m > 2 as follows

"L b
uiyl(x) = —ﬁz [)\1
j=1

a n+1 n+1
> Wikii(@)g(tie) + o Z Wa kij(2)g(t2,k)
k=1

n b a n+1
wim () = (1 + h)us m—1(x) — ﬁz [Al Z Wi kij () Wi m—1(t1,k) (29)
j=1 k=1
z—a
+ A2 Z W2,kij($)ui,m—1(t2,k)] ,m>2,4€{l,...,n}.
k=1

On the other hand, for the MHAM, we have fori € {1,...,n},

n+1
Z Wi ki (@) wi0(t1,%)

ui}l(ac) = h [gi( ) Sz 0 hz [)\1

n+1 ‘|
xr—a

+ A2 Z Wokij(x)uioltar) |,

n n+1
Ui,m(x) =(1+ h)ui,m—l(x) - hsi,m—l(x) Z [ Uz,m—l(tl,k)
(30)

n+1
rT—a
+ A2 5 ZW2,kij( T)Uj 1(7521@)] 2<m<n+1,

ul,m(‘r) = (1 + h)ul,m 1 hz [Al Z Wl Jkig (.’E)’LL] m— 1(t1 k)

n+1
Z WQ,kij ($)Uj,m_1(t2’k)‘| ,m>n—+1,

r—a

+ A2

where
b—a b+a
Wi ij(x) = k15(z, t1 k) wi, t g = 5 Tk 5
T —a r+a
Wo k() = kaij (@, to k)W, la g = 5 Tk + 5

and r, are the roots of Legendre polynomials defined by (26).

The MHAM with GLQF, as defined by (29) and (30), is very useful when the kernel integral
has no analytic solution, and it also is highly accurate.
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5 Numerical Experiments

In this section, we present a comparison between the MHAM and the standard HAM, as well as
OHAM.

Example 1 (Ghazandi & Yari [6]): Let us consider the following system of Fredholm integral
equations:

5 L. ' 3 ! 2
Ul(l’)f%*%IJrgl’ — 3¢ Jr/o (z —t)%u1(t) dtJr/O (x — t)“ua(t) dt,

La, 2,5 3, 41 1 /1 s /1 3
- _= = St o —t t) dt —t t) dt.
up(@) = —ga* + o’ + gpe’ — e — g+ | @= 0t dit | (@ 1) ua()

Comparing with (3) we have A\; = 1, A; = 0, and the kernels and functions are
k111(x,t) = (x — t)3, k112(x,t) = (x — t)?,
kro1(z,t) = (¢ — 1), koo (2,t) = (z —1)°,

The exact solutions are

As initial guess let us choose

ug,0(z) = ga(x).

{um(fﬂ) = 91(90),

Then, using eq. (17) of the standard HAM, we obtain the first iteration as follows:

ul,l(x)—h[/ol(xt) ()dt+/01(xt) ()dt}

61 5 161 , 11 &
= —h _|_ J— JE— ,
180 240 30 1800

uz,l(x)__h[/ol(x_t) ()dt+/01(z—t) ()dt}
h(m i 133 5 41, 1601 209>.

i ———

1307 T 1" T " T 5040” * 6300
Using eq. (20) of the standard HAM, the second and third iterations can be computed as follows:

1
ulﬁm(x) = (]. -+ h)uiym,l(x) — h[/ kl’i1($,t)ul’m,1(t) dt
0
1
+/ k171'2(1‘,t)UQ7m_1(t) dt‘| ,i S {1,2}, m Z 2.
0
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Now, let us solve the same problem with the MHAM. To do this, let us rewrite ¢; (x) and g2 ()
as

5 11 1 1
gl(x) = (3902 — 30x> + <—3333 + 20) = 81,0(96) + 81,1($),

23 41 1 3 1
g2(x) = (12:1:3 — 60.1‘) + (—3:1: + %xQ — 30) = s90(x) + s2.1(x).

The corresponding functions ¢;(z, ¢) can be written as
e1(2,q) = s1,0(2) + s1,1(2)q,
p2(2,q) = s20(z) + s2,1(x)g.
Since
¢i(7,q)| =0 = wi,o(x) = gi(),

@i('ra q)|q:0 = Si,0($)7

for i € {1, 2}, then, for m = 1, eq. (22) of the MHAM gives us

ur1(z) = h{gl(x) —s1,0(x) — {/Ol(x—t) 1(t )dt+/1(m—t) a(t )dt}}

121 5 161 , 11 179
—h + — -
180 240 30 1800

uz1(z) = h{gg(l’) —s90(x) — {/Ol(xt) 1(t )dt+/01(xt) 2(t )dt}}

__p 121 o 1333;3 @x2_1601x+ 419
N 180" 144 240 5040 6300 ) -

Eq. (23) gives any iterations of the MHAM as follows:

ULQ(I) = (1 + h)u171(1’) — hSiJ(I’) —h

1 1
/ (z —t)3uy 1 (t) dt +/ (z — t) g (t) dt],i € {1,2},
0 0

uiym(:v) = (1 + ﬁ)ui7m_1(x) — h|:/0\ (l‘ - t)S’UJLm_l(t) dt +/(; (1’ - t)2u277n_1(t) dt‘| ,7: S {1, 2}
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Tables 1 and 2 summarize results of standard HAM and MHAM, as well as results from other

works.

Table 1: Numerical solutions of Example 1 for i = —1 and N = 3. [x] denotes data obtained from [6].
|| flur = Ussll | lur = Usgll | [lur = Uss|l || lluz = U2l | lluz = Uzl | [luz — Uz,3]|

HAM MHAM OHAM [«] || HAM MHAM OHAM [x]
0.0 || 1.98x107% | 3.10x107* | 224 x 1077 || 1.32x107% | 2.09 x 107% | 1.54 x 1077
0.1 || 848 x 1077 | 2.02x107* | 1.83x 1078 || 424 x 1077 | 1.24x 107 | 1.75 x 1078
0.2 || 5.95x 1078 | 1.17x 107* | 8.69 x 1078 || 2.78 x 1078 | 7.33 x 107° | 9.08 x 1078
0.3 || 422x1077 | 528 x107° | 3.32x 1078 || 1.77x 1077 | 4.66 x 107° | 8.76 x 1078
04 || 6.35x1077 | 4.68x107° | 9.16 x 1078 || 1.51 x 1077 | 3.69 x 1075 | 3.18 x 108
0.5 || 6.20x 1077 | 3.04x107° | 2.36 x 1077 || 6.20 x 107% | 3.81 x 107° | 5.04 x 108
0.6 || 417x1077 | 557 x107° | 349 x 1077 || 6.61 x 107° | 4.56 x 107° | 1.30 x 1077
0.7 || 6.45x 1078 | 7.48x 107° | 3.78 x 1077 || 6.50 x 108 | 5.60 x 107 | 1.77 x 1077
0.8 || 3.97x 1077 | 9.08 x 107 | 2.73x 1077 || 3.02x 1077 | 6.71 x 1075 | 1.56 x 1077
0.9 || 928 x 1077 | 1.07x107* | 1.80 x 1078 || 7.65 x 107 | 7.84 x 107° | 3.33 x 1078
1.0 || 1.49x107°% | 1.28 x107* | 546 x 1077 || 1.49 x 1075 | 9.04 x 107° | 2.31 x 10~ "

Table 2: Numerical solutions of Example 1 for h = —1 and N = 10. [x] denotes data obtained from [13].

x| [lur = Usoll | lur = Urioll | [lur = Uraoll || llue = U210l | lluz — Uz0ll | [Juz — Uz,10||

HAM MHAM HAM [%] HAM MHAM HAM [#]
0.0 || 1.71x107'7 | 2.86x107%° | — 3.02x107 % | 1.06x107 ™ | —
0.1 || 3.82x10717 | 2.52x107% | 1.11x107% || 0.000 2.28x1071 | 4.09%x10716
0.2 || 5.55x10717 | 7.34x107% | 1.28x107*° || 2.78x10717 | 1.92x1071% | 2.43x1071¢
0.3 || 4.16x10717 | 1.12x107 | 3.94x107'% || 0.000 2.83x1071 | 4.86x10716
0.4 || 5.55%10717 | 1.38x107** | 8.33x107*® || 5.55x107*7 | 1.55x107*® | 2.16x10~'°
0.5 || 5.55x107Y7 | 1.47x107* | 3.33x107*° || 2.78x1077 | 6.24x 1071 | 3.55%x107%°
0.6 || 0.000 1.34x1071% | 9.88x10715 || 8.33x107 Y7 | 2.59%x107%® | 5.88x1071°
0.7 || 0.000 9.55x107% | 2.28x107% || 2.78x 1077 | 2.64x107%° | 1.66x10~*
0.8 || 3.33x10716 | 3.11x107% | 1.80x107* || 5.55x10717 | 9.99%x10716 | 1.16x 10~
0.9 || 2.22x1071 | 6.88x107%° | 2.22x107%¢ || 1.11x1076 | 9.88x 107! | 3.46x 10~ **
1.0 || 2.22x1071% | 2.05%x107** | 1.38x107!* || 0.000 2.61x107 | 1.86x10714

5.1 Convergence Interval for Example 1

The convergence interval can be obtain by imposing the following conditions:

Ou;n (x, h)
ox

In particular, for N = 5, (31) becomes

=0

= f(h), h € [a,b],i€ {1,2}. (31)

duis(x, h) 153188029 5 1047581 B 55217h3 3691 B2 Eh 11
ox 2=0 T 423360000 576000 15120 1008 6 30°

Qs (x, h) 16118857583 o 89753269 i 1925171 3 6415}12 1601 L 41
ox 2=0 ~ 50803200000 56448000 604800 2016 1008 60"
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The graphs of these functions—called A-curves—give the convergence region. Figure 1 shows the
h-curves on the interval /i € [—2.5,0.5].

2.5 2 -1.5 -1 0.5 0.5

Figure 1: The h-curves for Example 1 (HAM) for N = 5.

Example 2 (Shidfar & Molabahrami [13]): Consider the following system of linear Volterra in-
tegral equations of the second kind:

up(z) = L g /OI (ua(t) + us(t)) dt,

ug(z) = iﬁ _ ixﬁl _ %IS — 322 -1+ /OI [(z — Dug(t) + tua(t) — zuy(t)] dt, )
us(z) = %azG _ %x?’ 4222134 /0 (e — () - 32w (0)] dt,

ug(z) = 23 — ’ xr — U1 .
a(7) 5+/0(2 3t)uy (t) dt

The exact solutions of this system are

ul(x) €L, UQ(x) :I2*1,
uz(x) = 222 +3, wuy(z) =2 - 5.

Comparing (32) with (3), we have A\; =0, A2 =1, and

n(z)=—z— z2,
1 1 1
g2(x) = Zx“r’ - 1934 - Qxd 327 — 1,
1 31 .
g3(z) = =a® — 2% 4 222 + 3,
2 6
ga(x) = 3 — 5,
with the kernels
Ky q11(x,t) =0, Kyqo(x,t) =1, Ky q3(x,t) =1, K q4(x,t) =0,
Kooi(z,t)=a—1, Ky 92(x,t) = t, K3 23(x,t) =0, Ky o4(z,t) = —,
Ky (z,t) =2 —t, Ky 32(x,t) =0, K3 33(x,t) = 0, Ko 34(x,t) = —3¢%,
K2741($,t) = 217 — 3t, K2,42(1‘,t) = O, K2743(£E,t) = O, K2744(13,t) = O

99



Z. K. Eshkuvatov ef al. Malaysian ]. Math. Sci. 16(1): 87-103 (2022) 87 - 103

Let us choose as initial guess
ui0(x) = gi(x), 1 € {1,2,3,4}.

Then, egs. (17) and (20) of the standard HAM yields
w1 (x) = —hz KQU x,t)g;(t) dt,

and

Uz’m(l') = (]. + h)ui7m71 — h/ Kgyij (x,t)ujym,l(t) dt,
0

form >2andi € {1,2,3,4}.

To apply egs. (22) and (23) of the MHAM, let us decompose the functions g;(x) as follows:
g1(x)

(—z) + (=2°) = s1.0(z) + s1.1(2),

(ot —1) + (a7 - 1o - 3)520< )+ 52.(a),

1
2
( —a’ + 227 +3) (x) r) + s3.1(2),

—5) + (2*) = s4,0(z) + 54,1 ().

Then, the corresponding functions ¢;(z,t) can be written as

1(x,t) = s10(x) + 51,1(%)q, wa(z,t) = s2.0(x) + s2,1(2)q,
p3(x,t) = s3,0(7) + 53,1(7)g, pa(@,1) = s4,0(z) + 54,1 (2)g.

It is easy to see that for i € {1,2,3,4}

$1(z, Q)|q:o = ui0(x) = gi(),
¢1(,q)] =g = si0().

Then, from (23) we obtain
w1 (x) = h(g,»( ) —sio(z / Ky ii(x,t)g,( )dt)
ui,g(x):(l—&-ﬁ)um( ) hSll hZ/ KQU x tujl()dt

Uim () = (1 4+ B)ujm—1( hZ/ Ko (@, t)ujm—1(t) dt,m > 3.
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Tables 3 and 4 summarize results of standard HAM and MHAM, as well as results from other

works.
Table 3: Numerical solutions of u1,10(z) and u2,10(x) for Example 2 with h = —1 and N = 10. [*] denotes [13].
z || [lur = Uraoll | [lur = Uroll | llur = Uroll|| [fuz = Uzoll | [luz — Uzoll | [luz — Uz,10]|
HAM MHAM HAM [%] HAM MHAM HAM [%]
0.0 || 0.000 0.000 - 0.000 0.000 0.000
0.1 || 5.55x10717 | 2.78 %1077 | 2.14x107*% || 1.11x107%% | 1.11x1071¢ | 3.33x10°!®
0.2 || 3.89%x10716 | 4.16x10716 | 2.56x1071* || 5.55%x107¢ | 3.33x1071¢ | 2.75x10"*
0.3 || 2.04x107 | 2.22x107™ | 3.98x107** || 1.80x107'* | 1.79%x107 | 1.09x 10~
0.4 || 2.58x10713 | 2.92%x1071% | 3.57x1071% || 2.54x1071% | 2.52x1071% | 2.38x107 13
0.5 || 1.96x107'2 | 2.18x107'2 | 2.45x107*% || 1.32x107'? | 1.29%x107'? | 9.09x 10~ '3
0.6 || 1.27x1071 | 1.35%x107 | 1.30x107! || 2.30x10712 | 1.78x10712 | 1.21x10*2
0.7 || 6.3d4x107 ! | 6.59x107 | 5.77x107* || 1.04x107" | 1.48x107! | 1.57x10~ !
0.8 || 1.96x1071° | 2.25%x1071° | 1.48x1071° || 1.22x1071° | 1.44x1071° | 1.38x1071°
0.9 || 1.52x107° | 8.01x107° | 1.38x107% || 7.03x107° | 5.32x107% | 7.39x 10 *°
1.0 || 275 x 1072 | 6.56 x 107° | 419 x107° || 2.71 x 107° | 2.87 x 1072 | 2.72 x 107°
Table 4: Numerical solutions of us,10(z) and u4,10(x) for Example 2 with A = —1 and N = 10. [*] denotes [13].
z || [lus = Usaoll | llus — Us,xoll| llus — Us,aoll | [lua — Usaol| | llua — Ussoll| llua — Usoll
HAM MHAM HAM [x] HAM MHAM HAM [x]
0.0 || 0.000 0.000 - 0.000 0.000 -
0.1 || 4.44x107" | 4.44x107' | 4.44x107'6 || 8.88x107*® | 0.000 0.000
0.2 || 8.88x107'¢ | 0.000 2.22x10715 || 8.88x1071% | 0.000 0.000
0.3 || 1.33x1071% | 2.22x1071° | 4.88x1071° || 6.22x107° | 4.44x107*° | 1.78x107*®
0.4 || 6.66x1071* | 7.24x1071* | 7.82x1071* || 1.08x107*% | 1.04x107*% | 7.28x10~*
0.5 || 8.87x107*% | 9.93%x107% | 1.02x107'% || 8.90x107*% | 8.40x107*% | 6.38x107*3
0.6 || 7.56x1072 | 8.56x107% | 8.67x107*% || 2.71x107*% | 2.13x107*% | 1.29x 10" *2
0.7 || 5.54x107 ! | 6.26x107 | 5.90x107! || 7.91x107'2 | 1.40x107 ! | 1.56x 10~
0.8 || 3.63x1071° | 4.06x1071° | 3.62x1071° || 1.45%x1071° | 2.09%x1071° | 1.81x101°
09 | 1.92x107°% | 1.94x107° | 1.83x 1072 || 1.15x107° | 1.92x 1072 | 1.28 x 107°
1.0 || 8.03x107% | 411 x107° | 725 x107° || 7.08 x 107° | 1.54 x 1078 | 7.52 x 10~°

5.2 Convergence Interval for Example 2

Figure 2 shows the four graphs of a% u;10(x, h)|

z=0"’

fori € {1,2,3,4}, in blue, red, green, yellow,
respectively. Note, graphs for red, green and yellow coincide with z-axis and cannot be clearly
observed. From this we can see that convergence interval of the A-curve is [—8, 6].
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Figure 2: The h-curve for Example 2 (HAM) for N=10.

6 Conclusions

In this paper, we have developed standard and modified HAM for solving systems of linear Fredholm-
Volterra integral equations by combining Gauss-Legendre quadrature formulas. Numerical re-
sults showed that the developed method is comparable with OHAM in Ghazanfari & Yari [6] and
with HAM developed in Shidfar & Molabahrami [13]. Tables 1-4 revealed that absolute minimum
error is obtained in the most cases of modified HAM. The developed method can be used when
integration problems cannot be solved analytically.
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