Extended Filters of MS-Algebras

Gaber, A.¹, Seoud, M. A.¹, and Tarek, M.∗¹

¹Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt

E-mail: Mona.Saad@sci.asu.edu.eg
∗Corresponding author

Received: 31 May 2023
Accepted: 21 August 2023

Abstract

For a filter T of an MS-algebra \mathcal{L} and a subset Z of \mathcal{L}, a new extension filter of T is introduced, denoted by $E_T(Z)$. Many properties of $E_T(Z)$ are investigated and the lattice structure of the set of all $E_T(Z)$ is studied. A new definition related to $E_T(Z)$ is presented, called fixed filters relative to a subset of \mathcal{L}. A generalisation of $E_T(Z)$ is illustrated by introducing the concept of strong filters, notated by $E_T(Z)$. The strong extension $E_T(Z)$ is characterized by the intersection of all strong filters fixed relative to an ideal $\mathcal{L} – \mathfrak{P}$ for a prime filter \mathfrak{P} of \mathcal{L}.

Keywords: bounded distributive lattice; MS-algebra; filter; ideal.
1 Introduction

The class MS of all MS-algebras was first considered by Blyth and Varlet [7]. Their basic goal was to define a common frame to study several similarities between de Morgan algebras and Stone algebras. The class MS is a subclass of Berman class $\text{K}_{1,1}$ which introduced by Berman in [3]. The theory of filters such as d_{L}- filters [1] and β-filters [12] of MS-algebras has been studied by many authors. In the twenty-first century, many related structures to lattice theory and MS-algebras [10, 11] had a great concern.

In this article, the concept of $E_{T}(Z)$ of a filter T is introduced for a nonempty subset Z in an MS-algebra. We prove that $E_{T}(Z)$ is an extension filter of the filter T. A complete distributive lattice is formed by $E_{T}(Z)$. The concept of a fixed filter relative to a subset of an MS-algebra is illustrated. Equivalent conditions were set for the fixed filter relative to a subset of an MS-algebra. The definition of strong fixed filter relative to a subset is introduced. Furthermore, we characterize fixed filters in the terms of strong fixed filters relative to the set L^{-P} for a prime filter P.

2 Preliminaries

In the following, we give the basic background to make the paper consistent.

A bounded distributive lattice $(\mathcal{L}; \lor, \land, ^{\circ}, 0, 1)$ together with a unary operation $\lambda \mapsto \lambda^{\circ}$ satisfying,

$$1^{\circ} = 0, \lambda \leq \lambda^{\circ \circ} \quad \text{and} \quad (\lambda \land \mu)^{\circ} = \lambda^{\circ} \lor \mu^{\circ},$$

is called an MS-algebra. Each element in an MS-algebra satisfies the given equalities.

Proposition 2.1. [6] Let $\mathcal{L} \in \text{MS}$ and $\lambda, \mu \in \mathcal{L}$. Then;

1. $(\lambda \lor \mu)^{\circ} = \lambda^{\circ} \land \mu^{\circ}$.
2. $(\lambda \lor \mu)^{\circ \circ} = \lambda^{\circ \circ} \lor \mu^{\circ \circ}$.
3. $(\lambda \land \mu)^{\circ \circ} = \lambda^{\circ \circ} \land \mu^{\circ \circ}$.
4. $\lambda^{\circ \circ \circ} = \lambda^{\circ}$.
5. $0^{\circ} = 1$.

For $T \subseteq \mathcal{L}$, T is characterised as a filter provided that T is a sublattice of \mathcal{L} and if $\alpha \in T$, $\omega \in \mathcal{L}$, then $\alpha \lor \omega \in T$. A prime filter \mathfrak{P} is a proper filter satisfying that if $\omega, \tau \in \mathcal{L}$ such that $\omega \lor \tau \in \mathfrak{P}$ then $\omega \in \mathfrak{P}$ or $\tau \in \mathfrak{P}$. Let $\omega \in \mathcal{L}$. We set the notation $[\omega]$ for the principal filter of \mathcal{L} generated by ω and it is equivalent to the following $[\omega] = \{ \alpha \in \mathcal{L} : \alpha \geq \omega \}$. For a non empty subset $Z \subseteq \mathcal{L}$, the filter $[Z]$ of \mathcal{L} generated by the set Z is defined by

$$[Z] = \{ \lambda \in \mathcal{L} : \lambda \geq z_{1} \land z_{2} \land ... \land z_{n} \quad \text{for} \quad z_{1}, z_{2}, ..., z_{n} \in Z \}. $$

Associating the lattice \mathcal{L} with the distributive property, the symbol $\mathfrak{F}(\mathcal{L})$ stands for the lattice of all filters ordered by inclusion. Obviously, the filter $[1] = \{1\}$ is the smallest member of $\mathfrak{F}(\mathcal{L})$. Also, $[0] = \mathfrak{F}$ is the largest member of $\mathfrak{F}(\mathcal{L})$. We notate the class of all ideals by $\mathfrak{l}(\mathcal{L})$.

460
Theorem 2.1. If \(\mathcal{L} \in \text{MS} \) and \(T, R \in \mathfrak{F}(\mathcal{L}) \). Then
\[
T \triangledown R = \left\{ \lambda \vee \mu : \lambda \in T \text{ and } \mu \in R \right\},
\]
is a member of \(\mathfrak{F}(\mathcal{L}) \).

Proof. Obviously, \(1 \in T \triangledown R \). For \(\lambda \in T \) and \(\mu \in R \), suppose \(\delta \in \mathcal{L} \) such that \(\delta \geq \lambda \vee \mu \). Therefore \(\delta \in T \) and \(\delta \in R \). Thus, \(\delta = \delta \vee \delta \in T \triangledown R \).

Let \(\delta, \gamma \in T \triangledown R \). Then there exist \(\lambda_1, \lambda_2 \in T \) and \(\mu_1, \mu_2 \in R \) such that \(\delta = \lambda_1 \vee \mu_1 \) and \(\gamma = \lambda_2 \vee \mu_2 \). We have that
\[
\delta \wedge \gamma = (\lambda_1 \vee \mu_1) \wedge (\lambda_2 \vee \mu_2)
\]
\[
\quad = \left[(\lambda_1 \vee \mu_1) \wedge \lambda_2 \right] \vee \left[(\lambda_1 \vee \mu_1) \wedge \mu_2 \right]
\]
\[
\quad = \left[(\lambda_1 \wedge \lambda_2) \vee (\mu_1 \wedge \lambda_2) \right] \vee \left[(\lambda_1 \wedge \mu_2) \vee (\mu_1 \wedge \mu_2) \right] \in T \triangledown R,
\]
since \(\lambda_1 \wedge \lambda_2 \in T \) and \(\mu_1 \wedge \mu_2 \in R \). Hence \(T \triangledown R \in \mathfrak{F}(\mathcal{L}) \). \(\square \)

Theorem 2.2. For \(\mathcal{L} \in \text{MS} \). Let \(J, K \in \mathbb{I}(\mathcal{L}) \). Define
\[
J \triangledown I K = \left\{ z : z \leq \lambda \wedge \mu : \lambda \in J \text{ and } \mu \in K \right\}.
\]
Then \(J \triangledown I K \in \mathbb{I}(\mathcal{L}) \).

Proof. Clearly, \(0 \in J \triangledown I K \). For \(\lambda \in J \) and \(\mu \in K \), suppose \(\delta \in \mathcal{L} \), such that \(\delta \leq \lambda \wedge \mu \). Obviously, \(\delta \in J \triangledown I K \). Let \(\delta, \gamma \in J \triangledown I K \). It follows that \(\delta \leq \lambda_1 \wedge \mu_1 \) and \(\delta \leq \lambda_2 \wedge \mu_2 \) for \(\lambda_1, \lambda_2 \in J \) and \(\mu_1, \mu_2 \in K \). Then,
\[
\delta \triangledown \gamma \leq (\lambda_1 \wedge \mu_1) \triangledown (\lambda_2 \wedge \mu_2)
\]
\[
\quad \leq \left[(\lambda_1 \wedge \mu_1) \triangledown \lambda_2 \right] \wedge \left[(\lambda_1 \wedge \mu_1) \triangledown \mu_2 \right]
\]
\[
\quad \leq \left[(\lambda_1 \triangledown \lambda_2) \wedge (\mu_1 \triangledown \lambda_2) \right] \wedge \left[(\lambda_1 \triangledown \mu_2) \wedge (\mu_1 \triangledown \mu_2) \right] \in J \triangledown I K,
\]
since \(\lambda_1 \triangledown \lambda_2 \in J \) and \(\mu_1 \triangledown \mu_2 \in K \). \(\square \)

Theorem 2.3. [9] For \(\mathcal{L} \in \text{MS} \). The set \(\mathcal{L} - \mathfrak{P} \in \mathbb{I}(\mathcal{L}) \) providing that \(\mathfrak{P} \) is a prime filter of \(\mathcal{L} \).

For details of MS-algebras, [2] highlighted many aspects of the variety MS. In [5], the subvarieties of MS were determined. Also, many constructions and substructures of MS-algebras were presented in [4, 8]. Throughout the paper we use the symbol \(\mathfrak{L} \) for an MS-algebra.

3 Extended Filter

For \(T \in \mathfrak{F}(\mathcal{L}) \) and a nonempty subset \(Z \) of \(\mathcal{L} \), define
\[
E_T(Z) = \left\{ \lambda \in \mathcal{L} : \lambda \vee z^\circ \in T \text{ for every } z \in Z \right\}.
\]
Theorem 3.1. For $T \in \mathcal{F}(\mathcal{L})$, the set $E_T(Z)$ is a filter of \mathcal{L} containing T.

Proof. Obviously, $1 \in E_T(Z)$. Assume that $\lambda \in E_T(Z)$ and $\mu \in \mathcal{L}$ satisfying $\lambda \leq \mu$. We have that $\mu \lor z^{00} \geq \lambda \lor z^{00}$. Therefore $\mu \lor z^{00} \in T$. Then $\mu \in E_T(Z)$. Assume that $\lambda, \mu \in E_T(Z)$. Since $(\lambda \land \mu) \lor z^{00} = (\lambda \lor z^{00}) \land (\mu \lor z^{00}) \in T$, then $\lambda \land \mu \in T$. Clearly, $T \subseteq E_T(Z)$.

We call $E_T(Z)$ an extended filter of T. The following theorem encapsulates many characterisations of $E_T(Z)$.

Lemma 3.1. Let $T \in \mathcal{F}(\mathcal{L})$. For any nonempty subset Z of \mathcal{L}, we have:

1. If Z is contained in the subset W, then $E_T(W) \subseteq E_T(Z)$.
2. If R is a filter contains T, then $E_T(Z) \subseteq E_R(Z)$.
3. If T contains each element of Z, then $E_T(Z) = \mathcal{L}$.
4. If $0 \in Z$, then $E_T(Z) = \mathcal{L}$ implies that $Z \subseteq T$.
5. If $T \subseteq Z$ and $z^{00} = 0$ for some $z \in Z$, then $E_T(Z) \cap Z = T$.
6. If $\alpha^{00} = 0$ for some $\alpha \in E_T(Z)$, then $E_T(E_T(Z)) \cap E_T(Z) = T$.
7. $E_T(Z) = E_T([Z])$.
8. $E_{E_T(Z)}(W) = E_{E_T(W)}(Z)$.

Proof.

1. Assume that $Z \subseteq W$. If $\lambda \in E_T(W)$, then $\lambda \lor w^{00} \in T$ for every $w \in W$. It follows that $\lambda \lor z^{00} \in T$ for every $z \in Z \subseteq W$. Hence $\lambda \in E_T(Z)$.
2. Suppose $T \subseteq R$ and $\lambda \in E_T(Z)$. This implies that $\lambda \lor z^{00} \in T \subseteq R$ for every $z \in Z$. Thus $\lambda \in E_R(Z)$. Hence $E_T(Z) \subseteq E_R(Z)$.
3. Let $Z \subseteq T$. Obviously, $E_T(Z) \subseteq \mathcal{L}$. Conversely, suppose $\lambda \in \mathcal{L}$ and $z \in Z$. Since $z \in T$ and $\lambda \lor z^{00} \geq z^{00} \geq z$, then $\lambda \lor z^{00} \in T$. We conclude that $E_T(Z) = \mathcal{L}$.
4. Assume that $\lambda \in Z$ and $E_T(Z) = \mathcal{L}$. Then $\lambda \lor z^{00} \in T$ for every $z \in Z$. Hence $\lambda = \lambda \lor 0^{00} \in T$.
5. We have that $T \subseteq E_T(Z) \cap Z$. Conversely, let $\lambda \in E_T(Z) \cap Z$. We get that $\lambda \in Z$ and $\lambda \in E_T(Z)$. Then $\lambda \lor z^{00} \in T$ for every $z \in Z$. Thus $\lambda = \lambda \lor 0 \in T$. This implies that $E_T(Z) \cap Z \subseteq T$. Hence $E_T(Z) \cap Z = T$.
6. Follows directly from (5).
7. By (1), $E_T([Z]) \subseteq E_T(Z)$. Conversely, suppose that $\lambda \in E_T(Z)$, then $\lambda \lor z^{00} \in T$ for every $z \in Z$. Let $p \in [Z]$. It follows that $p \geq z_1 \land z_2 \land \ldots \land z_n$ for some $z_1, \ldots, z_n \in Z$. Then $\lambda \lor p^{00} \geq \lambda \lor (z_1^{00} \land \ldots \land z_n^{00}) \geq (\lambda \lor z_1^{00}) \land \ldots \land (\lambda \lor z_n^{00}) \in T$.

Hence $E_T(Z) = E_T([Z])$.

462
Remark 3.1.

(1) The converse of (3) is not necessarily true. For example, set \(\mathcal{L} = \{0 \leq \lambda \leq \mu \leq \gamma \leq 1\} \), such that \(\mu = \mu^0 = \lambda^0, \gamma^0 = 0 = 1^0, 0^0 = 1 \). Clearly, \((L, \cup) \in \text{MS} \). Suppose that \(T = \{\mu\} = \{\mu, \gamma, 1\}\) and \(Z = \{\lambda, \gamma\} \not\subseteq T \). Then \(E_T(Z) = \mathcal{L} \). So the condition \(0 \in Z \) in (4) is necessary.

(2) The set \(Z \) is not necessarily a subset of \(E_T(E_T(Z)) \). For example, we obtain in the previous example that \(E_T(Z) = \mathcal{L} \) and \(E_T(E_T(Z)) = E_T(\mathcal{L}) = T \).

For \(T \in \mathfrak{F}(\mathcal{L}) \) and \(Z \subseteq \mathcal{L} \), we use the following notations:

\[
\mathbb{E}(Z) = \left\{ E_T(Z); \ T \in \mathfrak{F}(\mathcal{L}) \right\},
\]

\[
\mathbb{E}_T = \left\{ E_T(Z); \ Z \subseteq \mathcal{L} \right\}.
\]

Proposition 3.1. If \(T \in \mathfrak{F}(\mathcal{L}) \), then \(T \) is a member of \(\mathbb{E}_T \). Moreover, \(T \) is the smallest element in \(\mathbb{E}_T \).

Proof. It is easy to prove that \(T = E_T(\{0\}) \), thus \(T \in \mathbb{E}_T \). Also, for every non empty \(Z \subseteq \mathcal{L} \) we have that \(T \subseteq E_T(Z) \). Hence \(T \) is the smallest element in \(\mathbb{E}_T \). □

In the next lemma, basic properties of \(\mathbb{E}(Z) \) and \(\mathbb{E}_T \) are investigated seeking for constructing a new lattice.

Lemma 3.2. Let \(\mathcal{L} \in \text{MS} \). For nonempty subsets \(Z \) and \(W \) of \(\mathcal{L} \), we have;

1. \(\bigcup_{i \in I} E_T(Z_i) \subseteq E_T(\bigcap_{i \in I} Z_i) \).
2. \(E_T(\bigcup_{i \in I} Z_i) \subseteq \bigcap_{i \in I} E_T(Z_i) \).
3. \(E_T(Z) \cap E_T(W) = E_T(Z \cup W) \).

Proof.

1. Obviously, \(\bigcap_{i \in I} Z_i \subseteq Z_i \) for every \(i \in I \). Then \(E_T(Z_i) \subseteq E_T(\bigcap_{i \in I} Z_i) \) for every \(i \in I \). Hence, \(\bigcup_{i \in I} E_T(Z_i) \subseteq E_T(\bigcap_{i \in I} Z_i) \).

2. Clearly, \(Z_i \subseteq \bigcup_{i \in I} Z_i \) for every \(i \in I \). By Lemma 3.1 (1), \(E_T(\bigcup_{i \in I} Z_i) \subseteq E_T(Z_i) \) for every \(i \in I \). Hence, \(E_T(\bigcup_{i \in I} Z_i) \subseteq \bigcap_{i \in I} E_T(Z_i) \).
(3) Let \(\lambda \in E_T(Z \cup W) \). Then \(\lambda \lor \mu^\circ \in T \) for every \(\mu \in Z \cup W \). Thus, \(\lambda \lor z^\circ \in T \) and \(\lambda \lor w^\circ \in T \) and for every \(z \in Z \) and every \(w \in W \). So, \(\lambda \in E_T(Z) \) and \(\lambda \in E_T(W) \). This implies that \(\lambda \in E_T(Z) \lor E_T(W) \).

Conversely, assume that \(e \in E_T(Z) \lor E_T(W) \). Then, \(e = \lambda \lor \mu \) for some \(\lambda \in E_T(Z) \) and \(\mu \in E_T(W) \). Let \(z \in Z \) and \(w \in W \). Then,

\[
e \lor z^\circ = (\lambda \lor \mu) \lor z^\circ = \mu \lor (\lambda \lor z^\circ) \in T \quad \text{since} \quad \lambda \lor z^\circ \in T.
\]

Similarly, \(e \lor w^\circ \in T \). Hence \(\lambda \in E_T(Z \cup W) \).

\[\square\]

Theorem 3.2. Let \(T \in \mathfrak{F}(\mathfrak{L}) \). Let \(Z \) and \(W \) be nonempty subsets of \(\mathfrak{L} \). Then,

1. \(E_T(\emptyset) = T = E_T(\{0\}) \).
2. \(E_T(\{1\}) = \mathfrak{L} = E_T(T) \).
3. \(E_T(Z) \cap E_T(W) = E_T(Z \cup W) \).
4. If \(E_T(Z \cap W) \subseteq E_T(Z) \lor E_T(W) \), then \(E_T(Z \cap W) = E_T(Z) \lor E_T(W) \).

Proof.

1. We have that \(T \subseteq E_T(\mathfrak{L}) \). On the other hand, let \(\lambda \in E_T(\emptyset) \). Thus \(\lambda \lor a^\circ \in T \) for every \(a \in \emptyset \). Since \(\emptyset \) is bounded, we get that \(\lambda = \lambda \lor 0^\circ \in T \). We can easily see that \(E_T(\{0\}) = T \).

2. Clearly, \(\mathfrak{L} = E_T(T) \). We only need to prove that \(\mathfrak{L} = E_T(\{1\}) \). Assume that \(\lambda \in \mathfrak{L} \), then \(\lambda \lor 1^\circ = 1 \in T \).

3. \(Z, W \subseteq Z \cup W \) imply that \(E_T(Z \cup W) \subseteq E_T(Z) \) and \(E_T(Z \cup W) \subseteq E_T(W) \). So, \(E_T(Z \cup W) \subseteq E_T(Z) \cap E_T(W) \). Conversely, let \(\lambda \in E_T(Z) \cap E_T(W) \). Then \(\lambda \in E_T(Z) \) and \(\lambda \in E_T(W) \). It follows that \(\lambda \lor z^\circ \in T \) for every \(z \in Z \) and \(\lambda \lor w^\circ \in T \) for every \(w \in W \).

Therefore \(\lambda \lor a^\circ \in T \) for every \(a \in Z \cup W \). Hence \(\lambda \in E_T(Z \cup W) \).

4. Since \(Z \cap W \subseteq Z, W \), then \(E_T(Z), E_T(W) \subseteq E_T(Z \cap W) \). Hence, \(E_T(Z) \lor E_T(W) \subseteq E_T(Z \cap W) \).

\[\square\]

Corollary 3.1. For \(T \in \mathfrak{F}(\mathfrak{L}) \). Assume that \(E_T(Z \cap W) \subseteq E_T(Z) \lor E_T(W) \) for any two subsets \(Z \) and \(W \) of \(\mathfrak{L} \). Then \((E_T; \lor, E_T(\{0\}), E_T(\{1\})) \) is a bounded distributive lattice.

Remark 3.2. Obviously, if \(\mathfrak{L} \) is a complete lattice, then \((E_T; \lor, E_T(\{0\}), E_T(\{1\})) \) is also a complete lattice.

Theorem 3.3. If \(Z \) is a subset of \(\mathfrak{L} \), then \((\mathfrak{E}(Z); \lor, E_{\{1\}}(Z), E_{\{0\}}(Z)) \) is a bounded distributive lattice. Moreover, \(\mathfrak{E}(Z) \) is a complete lattice providing that \(\mathfrak{L} \) is a complete lattice.
Proof. For a subset Z of \mathcal{L} and $T \in \mathfrak{F}(\mathcal{L})$, we show that $E \bigcap_{i \in I} T_i(Z) = \bigcap_{i \in I} E_{T_i}(Z)$. We have that $\bigcap_{i \in I} T_i \subseteq T_i$ for every $i \in I$. By Lemma 3.1 (2), $E \bigcap_{i \in I} T_i(Z) \subseteq E_{T_i}(Z)$ for every $i \in I$. Then $E \bigcap_{i \in I} T_i(Z) \subseteq \bigcap_{i \in I} E_{T_i}(Z)$.

Conversely, let $\lambda \in \bigcap_{i \in I} E_{T_i}(Z)$. Then $\lambda \in E_{T_i}(Z)$ for every $i \in I$. This implies that $\lambda \lor z^{\circ\circ} \in T_i$ for every $z \in Z$ for every $i \in I$. Then $\lambda \lor z^{\circ\circ} \in \bigcap_{i \in I} T_i$ for every $z \in Z$. Therefore $\lambda \in E \bigcap_{i \in I} T_i(Z)$. Hence $E \bigcap_{i \in I} T_i(Z) = \bigcap_{i \in I} E_{T_i}(Z)$.

We also need to show that $E_{T\cap R}(Z) = E_T(Z) \cap E_R(Z)$. By Theorem 2.1, we have that $E_T(Z) \cap E_R(Z) = \{\lambda \lor \mu; \lambda \in E_T(Z), \mu \in E_R(Z)\}$ is a filter of \mathcal{L}. For every $i \in T$ and $r \in R$ we have that $t, r \leq t \lor r$. Then $t \lor r \in T, R$. Therefore $T \cap R \subseteq T, R$ and then $E_{T \cap R}(Z) \subseteq E_T(Z), E_R(Z)$. Thus $E_{T \cap R}(Z) \subseteq E_T(Z) \cap E_R(Z)$. Conversely, assume that $e \in E_T(Z) \cap E_R(Z)$, therefore $e = \lambda \lor \mu$ for some $\lambda \in E_T(Z)$ and $\mu \in E_R(Z)$, then for every $z \in Z$ we have,

$$e \lor z^{\circ\circ} = (\lambda \lor \mu) \lor z^{\circ\circ} = (\lambda \lor z^{\circ\circ}) \lor (\mu \lor z^{\circ\circ}) \in T \cap R.$$

Hence $e \in E_{T \cap R}(Z)$. If \mathcal{L} is a complete, then $(E_T, \lor, E(R), \{0\}, E(\{1\}))$ is complete. \[\square\]

Definition 3.1. A filter T of \mathcal{L} is said to be fixed relative to a subset Z of \mathcal{L} if $E_T(Z) = T$.

We denote the class of all fixed filters relative to subset Z of \mathcal{L} by Δ_Z. The following example illustrates the concept of a fixed filter relative to a subset of \mathcal{L}.

Example 3.1. Let $\mathcal{L} = \{0 \leq \mu \leq \delta \leq 1\}$ such that $\mu = \mu^{\circ\circ}$, $\delta^{\circ} = 0$, $0^{\circ} = 1$. Obviously, $(\mathcal{L}, \circ\circ) \in MS$. Suppose that $T = [\mu] = \{\mu, \delta, 1\}$ and $Z = \{\mu, 0\}$. Obviously, $E_T(Z) = T$. Then T is fixed relative to Z. Suppose that $C = \{\delta\}$. Thus $E_T(C) = \mathcal{L}$. Hence T is not fixed relative to C.

Proposition 3.2. Let $T \in \mathfrak{F}(\mathcal{L})$ and $Z \in \mathcal{L}$. The following statements are equivalent:

1. If $\lambda^{\circ\circ} = 0$ for some $\lambda \in E_T(Z)$, then $E_T(E_T(Z)) = \mathcal{L}$.
2. T is fixed relative to a subset Z.
3. T is fixed relative to a subset $\{Z\}$.

Proof. By Lemma 3.1 (7), $E_T(Z) = T$ is equivalent to $E_T(\{Z\}) = T$. Then (2) if and only if (3). Assume the condition of (2). We get that $E_T(E_T(Z)) = E_T(T) = \mathcal{L}$. Thus (2) implies (1). Consider (1). Therefore $E_T(E_T(Z)) = \mathcal{L}$. By Lemma 3.1 (6), $\mathcal{L} \cap E_T(Z) = T$. Thus $E_T(Z) = T$. Hence, (1) implies (2). \[\square\]

Proposition 3.3. For a maximal filter M of \mathcal{L}, M is fixed relative to Z provided that $E_M(Z)$ is a proper filter of \mathcal{L}.

Proof. Since $M \subseteq E_M(Z)$ and $E_M(Z) \neq \mathcal{L}$, then $M = E_M(Z)$. \[\square\]

Proposition 3.4. Let $T \in \mathfrak{F}(\mathcal{L})$ and let $Z, W \subseteq \mathcal{L}$. If $Z \subseteq W$ and T is fixed relative to Z, then T is fixed relative to W. 465
Proof. Let \(Z \subseteq W \). Then \(E_T(W) \subseteq E_T(Z) = T \). Therefore \(E_T(W) = T \). Hence \(T \) is fixed relative to \(W \).

Proposition 3.5. For \(Z \subseteq L \), the set \(\Delta_Z \) is a meet semi lattice of \((E(Z), \cap)\).

Proof. Clearly, \(\Delta_Z \) is an ordered subset of \(E(Z) \) by restricting the relation \(\leq \) to \(\Delta_Z \). By Theorem 3.3, \(E_T \cap R(Z) = E_T(Z) \cap E_R(Z) = T \cap R \in \Delta_Z \) for \(T, R \in \Delta_Z \).

4 Strong Extensions

In this section, we go further by defining the concept of strong fixed filter \(E_T(\kappa) \) relative to an ideal \(\kappa \) of an MS-algebra. We notate the class of all prime filters by \(\text{Spec}(L) \). For \(T \in \mathfrak{F}(L) \), define

\[
E_T(\kappa) = \left\{ \alpha \in L : \alpha \lor a^{\infty} \in T, \text{ for some } a \in \kappa \right\},
\]

for an ideal \(\kappa \). Obviously, \(E_T(\kappa) \subseteq E_T(\kappa) \). So, we have \(T \subseteq E_T(\kappa) \subseteq E_T(\kappa) \). Thus \(E_T(\kappa) \) is an extension of both \(T \) and \(E_T(\kappa) \).

Theorem 4.1. If \(L \in \text{MS}, \kappa \in \mathfrak{l}(L) \) and \(T \in \mathfrak{F}(L) \). Then \(E_T(\kappa) \) is a filter of \(L \).

Proof. We see that \(1 \in E_T(\kappa) \), as \(1 = 1 \lor 0^{\infty} \). Assume that \(\lambda \in E_T(\kappa) \). Then \(\lambda \lor a^{\infty} \in T \) for some \(a \in \kappa \). Let \(\mu \in L \) satisfying that \(\lambda \leq \mu \). Then \(\mu \lor a^{\infty} \geq \lambda \lor a^{\infty} \in T \). Thus \(\mu \in E_T(\kappa) \). If \(\lambda, \mu \in E_T(\kappa) \), then \(\lambda \lor a^{\infty} \in T \) and \(\mu \lor b^{\infty} \in T \) for some \(a, b \in \kappa \). We have

\[
(\lambda \land \mu) \lor (a \lor b)^{\infty} = (\lambda \land \mu) \lor (a^{\infty} \lor b^{\infty}) = [(\lambda \lor a^{\infty}) \lor b^{\infty}] \land [(\mu \lor b^{\infty}) \lor a^{\infty}].
\]

Since \((\lambda \lor a^{\infty}) \lor b^{\infty} \geq \lambda \lor a^{\infty} \) and \((\mu \lor b^{\infty}) \lor a^{\infty} \geq \mu \lor b^{\infty} \). We conclude that \([(\lambda \lor a^{\infty}) \lor b^{\infty}] \land [(\mu \lor b^{\infty}) \lor a^{\infty}] \in T \). Hence \(\lambda \land \mu \in E_T(\kappa) \).

The inclusion \(E_T(\kappa) \subseteq E_T(\kappa) \) is proper as shown in the next example.

Example 4.1. Consider \(L \) with the following Hasse diagram:

![Hasse diagram](image)
Define a unary operation \(^o \) on \(\mathcal{L} \) by \(\lambda^o = t, \beta^o = z^o = t^o = u, u^o = \beta, 1^o = 0, 0^o = 1 \). Then \((\mathcal{L}, ^o) \) is MS. Take \(T = [\beta] = \{ \beta, z, u, 1 \} \) and \(\kappa = (t) = \{ 0, t \} \). Then,

\[
E_T(\{t\}) = \left\{ n \in \mathcal{L} : n \lor 0^o \in T \text{ and } n \lor t^o \in T \right\} = \left\{ n \in \mathcal{L} : n \in T \text{ and } n \lor \beta \in T \right\} = \{ \beta, z, u, 1 \} = [\beta].
\]

\[
\overline{E_T}(\{t\}) = \left\{ n \in \mathcal{L} : n \lor 0^o \in T \text{ or } n \lor t^o \in T \right\} = \left\{ n \in \mathcal{L} : n \in T \text{ or } n \lor \beta \in T \right\} = \{ 0, t, \lambda, \beta, z, u, 1 \}.
\]

Lemma 4.1. Let \(\mathcal{L} \in \text{MS} \), \(T, R \in \mathfrak{F}(\mathcal{L}) \) and \(\kappa, \kappa_1, \kappa_2 \in \mathfrak{I}(\mathcal{L}) \). Then;

1. \(\kappa_1 \subseteq \kappa_2 \) implies that \(\overline{E_T}(\kappa_1) \subseteq \overline{E_T}(\kappa_2) \).
2. \(T \subseteq R \) implies that \(E_T(\kappa) \subseteq E_R(\kappa) \).
3. \(E_T(\kappa) \cap \overline{E_R(\kappa)} = \overline{E_{T \cap R}}(\kappa) \).
4. \(E_T(\kappa_1) \cap \overline{E_T}(\kappa_2) = \overline{E_T}(\kappa_1 \cap \kappa_2) \).
5. \(\overline{E_T}(\kappa) = \overline{E_{E_T(\kappa)}}(\kappa) \).

Proof.

1. If \(\alpha \in \overline{E_T}(\kappa_1) \), then \(\alpha \lor a^o \in T \) for some \(a \in \kappa_1 \subseteq \kappa_2 \). Thus \(\alpha \in \overline{E_T}(\kappa_2) \).
2. Suppose that \(\lambda \in \overline{E_T}(\kappa) \). We get that \(\lambda \lor a^o \in T \subseteq R \) for some \(a \in \kappa \). Consequently, \(\lambda \in E_R(\kappa) \).
3. We have that \(E_{T \cap R}(\kappa) \subseteq E_T(\kappa) \) and \(\overline{E_{T \cap R}(\kappa)} \subseteq \overline{E_R(\kappa)} \).
 Since \(T \cap R \subseteq T, R \), then \(E_{T \cap R}(\kappa) \subseteq E_T(\kappa) \cap E_R(\kappa) \). If \(\lambda \in \overline{E_T(\kappa) \cap \overline{E_R(\kappa)}} \), then \(\lambda \in \overline{E_T(\kappa)} \) and \(\lambda \in E_R(\kappa) \). Therefore \(\lambda \lor a^o \in T \) and \(\lambda \lor b^o \in R \) for some \(a, b \in \kappa \). These imply that \(\lambda \lor (a \lor b)^o = \lambda \lor a^o \lor b^o \geq \lambda \lor b^o \lor a^o \). Then \(\lambda \lor (a \lor b)^o \in T \cap R \). Thus \(\lambda \in \overline{E_{T \cap R}(\kappa)} \). We conclude that \(\overline{E_T}(\kappa) \cap \overline{E_R(\kappa)} = \overline{E_{T \cap R}}(\kappa) \).
4. As \(\overline{E_T}(\kappa_1 \cap \kappa_2) \subseteq \overline{E_T}(\kappa_1), E_T(\kappa_2) \), then \(E_T(\kappa_1 \cap \kappa_2) \subseteq \overline{E_T}(\kappa_1) \cap \overline{E_T}(\kappa_2) \). Conversely, let \(\lambda \in E_T(\kappa_1) \cap E_T(\kappa_2) \). Then \(E_T(\kappa_1) \) and \(E_T(\kappa_2) \). It follows that \(\lambda \lor a^o \in T \) for some \(a \in \kappa_1 \) and \(\lambda \lor b^o \in T \) for some \(b \in \kappa_2 \). Then,
 \[
 \lambda \lor (a \lor b)^o = (\lambda \lor a^o) \lor (\lambda \lor b^o) \in T.
 \]
 Since \(a \land b \in \kappa_1 \cap \kappa_2 \), then \(\lambda \in \overline{E_T}(\kappa_1 \cap \kappa_2) \).
5. Since \(T \subseteq \overline{E_T}(\kappa) \), by (2), we get that \(\overline{E_T}(\kappa) \subseteq \overline{E_{E_T(\kappa)}}(\kappa) \). Conversely, let \(\lambda \in \overline{E_{E_T(\kappa)}}(\kappa) \).
 Then \(\lambda \lor a^o \in \overline{E_T}(\kappa) \) for some \(a \in \kappa \). Therefore, \((\lambda \lor a^o) \lor b^o \in T \) for some \(a, b \in \kappa \). Then \(\lambda \lor (a \lor b)^o \in T \). As \(a \lor b \in \kappa \), we get that \(\lambda \in E_T(\kappa) \).
Lemma 4.2. Let $T \in \mathfrak{F}(\mathcal{L})$ and let Λ be a chain of members of $\mathbb{I}(\mathcal{L})$. Then

$$E_T(\bigcup_{\kappa \in \Lambda} \kappa) = \bigcup_{\kappa \in \Lambda} E_T(\kappa).$$

Proof. Clearly, $\bigcup_{\kappa \in \Lambda} \kappa$ is an ideal of \mathcal{L}. For each $\kappa \in \Lambda$, $\kappa \subseteq \bigcup_{\kappa \in \Lambda} \kappa$. This implies that $E_T(\kappa) \subseteq E_T(\bigcup_{\kappa \in \Lambda} \kappa)$. Then, $E_T(\kappa) \subseteq E_T(\bigcup_{\kappa \in \Lambda} \kappa)$. Conversely, let $\lambda \in E_T(\bigcup_{\kappa \in \Lambda} \kappa)$. Thus $\lambda \lor a^{oo} \in T$ for some $a \in \bigcup_{\kappa \in \Lambda} \kappa$. So, there exists $\kappa \in \Lambda$ such that $a \in \kappa$ and $\lambda \lor a^{oo} \in T$. Therefore $\lambda \in E_T(\kappa)$ for some $\kappa \in \Lambda$. It follows that $E_T(\bigcup_{\kappa \in \Lambda} \kappa) \subseteq \bigcup_{\kappa \in \Lambda} E_T(\kappa)$. Hence the claim is true.

Theorem 4.2. If $T \in \mathfrak{F}(\mathcal{L})$ and $\kappa \in \mathbb{I}(\mathcal{L})$, then,

$$E_T(\kappa) = \bigcap \{ E_T(\mathcal{L} - \mathfrak{P}) ; \mathfrak{P} \in \text{Spec}(\mathcal{L}) , \kappa \subseteq \mathcal{L} - \mathfrak{P} \}.$$

Proof. We have $E_T(\kappa) \subseteq E_T(\mathcal{L} - \mathfrak{P})$ for every $\mathfrak{P} \in \text{Spec}(\mathcal{L})$. Since $\kappa \subseteq \mathcal{L} - \mathfrak{P}$, then $E_T(\kappa) \subseteq \bigcap \{ E_T(\mathcal{L} - \mathfrak{P}) ; \mathfrak{P} \in \text{Spec}(\mathcal{L}) ; \kappa \subseteq \mathcal{L} - \mathfrak{P} \}$. On the other hand, by contrapositive we prove that $a \notin \bigcap \{ E_T(\mathcal{L} - \mathfrak{P}) ; \mathfrak{P} \in \text{Spec}(\mathcal{L}) ; \kappa \subseteq \mathcal{L} - \mathfrak{P} \}$. Consider $\Gamma = \{ J \in \mathcal{L} ; \kappa \subseteq J \land a \notin E_T(J) \}$. Obviously, $\kappa \in \Gamma$ so, $\Gamma \neq \emptyset$. Let Λ be a chain of members of Γ and $G = \bigcup_{J \in \Lambda} J$. By Lemma 4.2, $E_T(G) = \bigcup_{J \in \Gamma} E_T(J)$. Also, $\kappa \subseteq G$. Let $a \notin E_T(\kappa)$.

We show that there exists $\mathfrak{P} \in \text{Spec}(\mathcal{L})$ satisfying that $\kappa \subseteq \mathcal{L} - \mathfrak{P}$ and $a \notin E_T(\mathcal{L} - \mathfrak{P})$. Now, $a \notin E_T(J)$ for all $J \in \Lambda$, implies that $a \notin E_T(G)$. Therefore $E_T(G)$ is an upper bound of Λ. By Zorn’s Lemma, Γ has a maximal element J_0. Then $a \notin E_T(J_0)$. So, $\mathcal{L} \neq E_T(J_0)$. Equivalently, $J_0 \neq \mathcal{L}$. Consider $\mathfrak{P}_0 = \mathcal{L} - J_0$. We show that $\mathfrak{P}_0 \in \text{Spec}(\mathcal{L})$. Clearly 1 $\in \mathfrak{P}_0$. Let $\lambda \in \mathfrak{P}_0$ and $\mu \geq \lambda$. Then $\mu \notin J_0$. So, $\mu \in \mathfrak{P}_0$. Suppose that $\lambda, \mu \in \mathfrak{P}_0$. This implies that $\lambda^{oo}, \mu^{oo} \notin J_0$. So, $J_0 \subseteq \langle J_0 \cup \{ \lambda^{oo} \} \rangle$. Since J_0 is a maximal element of Γ, then $J_0 \cup \{ \lambda^{oo} \} \notin \Gamma$. We have $\kappa \subseteq J_0 \subseteq \langle J_0 \cup \{ \lambda^{oo} \} \rangle \notin \Gamma$ and $\kappa \subseteq J_0 \subseteq \langle J_0 \cup \{ \mu^{oo} \} \rangle \notin \Gamma$. Therefore,

$$a \in E_T(J_0 \cup \{ \lambda^{oo} \}) \quad \text{and} \quad a \notin E_T(J_0 \cup \{ \mu^{oo} \}).$$

It follows that there exists $b \in (J_0 \cup \{ \lambda^{oo} \}) \setminus (J_0 \cup \{ \mu^{oo} \})$ such that $a \lor b^{oo} \in T$. That is, there exist $\lambda_1, \mu_1 \in J_0$ such that $b \leq \lambda_1 \lor \lambda^{oo}$ and $b \leq \mu_1 \lor \mu^{oo}$. Let $z = \lambda_1 \lor \lambda^{oo}$ and $b \leq z \lor \mu^{oo}$. Therefore $a \lor b^{oo} \leq a \lor z^{oo} \lor \lambda^{oo}$ and $b \lor b^{oo} \leq a \lor z^{oo} \lor \mu^{oo}$. It follows that $a \lor z^{oo} \lor \lambda^{oo}, a \lor z^{oo} \lor \mu^{oo} \in T$. We get directly that $(a \lor z^{oo} \lor \lambda^{oo}) \land (a \lor z^{oo} \lor \mu^{oo}) \in T$. Then $(a \lor z^{oo}) \lor (\lambda^{oo} \land \mu^{oo}) \in T$. Thus $\lambda \land \mu \in \mathfrak{P}_0$. Otherwise, if $\lambda \land \mu \notin \mathfrak{P}_0$, then $\lambda \land \mu \in J_0$ implies that $a \lor z^{oo} \in E_T(J_0) = E_T(J_0)(J_0)$. Therefore, $a \in E_T(J_0)$, which is a contradiction. Then \mathfrak{P}_0 is a filter.

It remains to prove that \mathfrak{P}_0 is prime. If $a \lor b \notin \mathfrak{P}_0$. Then $a \lor b \notin J_0$. Thus $a \notin J_0$ or $b \notin J_0$. We conclude that $a \notin \mathfrak{P}_0$ or $b \notin \mathfrak{P}_0$. Thus \mathfrak{P}_0 is prime.

Moreover, $\kappa \subseteq \kappa_0 = \mathcal{L} - \mathfrak{P}_0$ and $a \notin E_T(J_0) = E_T(\mathcal{L} - \mathfrak{P}_0)$. Hence, $\mathfrak{P}_0 \in \text{Spec}(\mathcal{L})$. Therefore, $E_T(\mathcal{L} - \mathfrak{P}) \subseteq E_T(\kappa)$ and the proof is complete.

Corollary 4.1. Let $\mathcal{L} \in \text{MS}, \mu \in \mathcal{L}$ and $T \in \mathfrak{F}(\mathcal{L})$. Then,

$$E_T(\{ \mu \}) = \bigcap \{ E_T(\mathcal{L} - \mathfrak{P}) ; \mathfrak{P} \in \text{Spec}(\mathcal{L}), \mu \subseteq \mathcal{L} - \mathfrak{P} \}.$$
Proof. We prove that $E_T([\mu]) = E_T(\{\mu\})$. Clearly, $E_T(\{\mu\}) \subseteq E_T([\mu])$. Let $\lambda \in E_T([\mu])$. Then there exists $b \in (\mu]$ such that $\lambda \lor b^\circ \in T$. Thus $\lambda \lor b^\circ \leq \lambda \lor \mu^\circ \in T$. Then $\lambda \in E_T(\{\mu\})$.

From Theorem 4.2, $E_T(\{\mu\}) = \bigcap \{E_\delta(L - P), P \in \text{Spec}(L), \mu \subseteq L - P\}$. It remains to prove that $(\mu) \subseteq L - P$ if and only if $\mu \not\in P$.

Hence $E_T(\{\mu\}) = \bigcap \{E_\delta(L - P), P \in \text{Spec}(L), \mu \not\in P\}$.

In Example 4.1, we show that the inclusion is proper. This motivates the following definition.

Definition 4.1. A filter T of L is said to be a strong fixed filter relative to an ideal I of L if $T = E_T(\kappa)$.

Example 4.2. Consider the M-S-algebra in Example 3.1. Suppose that $T = [\delta] = \{\delta, 1\}$ and $\kappa = \{\mu, o\}$, thus $E_T(\kappa) = T$. Hence T is a strong fixed filter relative to κ. Take $R = \{\mu, \delta, 1\}$. We have $E_R(\kappa) = L$. Then R is not a strong fixed filter relative to κ.

Proposition 4.1. Every strong fixed filter relative to an ideal κ of L is a fixed filter of L relative to κ.

Proof. Assume that T is a strong fixed filter relative to an ideal κ of L. Then $E_T(\kappa) = T$. Since $T \subseteq E_T(\kappa) \subseteq E_T(\kappa) = T$, then $T = E_T(\kappa)$.

Proposition 4.2. If $\kappa_1, \kappa_2 \in \mathcal{I}(L)$ and T is a strong fixed filter of L relative to κ_2 satisfying $\kappa_1 \subseteq \kappa_2$. Then T is a strong fixed filter of L relative to κ_1.

Proof. Suppose that T is a strong fixed filter of L relative to an ideal κ_2. Then $T = E_T(\kappa_2)$. We have $\kappa_1 \subseteq \kappa_2$. Therefore $E_T(\kappa_1) \subseteq E_T(\kappa_2) = T$. Also, $T \subseteq E_T(\kappa_1)$. Hence $T = E_T(\kappa_1)$.

Remark 4.1. A prime filter P of L is not necessarily a strong fixed filter of L relative to the ideal $L - P$. Consider the following Hasse diagram L in Figure 2. Define a unary operation $^\circ$ on L by $\lambda^\circ = \eta^\circ = \eta$, $\delta^\circ = \nu^\circ = \delta$, $1^\circ = \gamma^\circ = \beta^\circ = \rho^\circ = 0$, $0^\circ = 1$. Then $(L, o) \in M$-S. Take $P = \{\eta\} = \{\eta, \rho, 1\}$. We have $L - P = \{0, \nu, \delta, \lambda, \beta, \gamma\}$. Then,

$$E_P(L - P) = \left\{ u \in L : u \lor \gamma^\circ \in P \text{ for some } \gamma \in L - P \right\}$$

$$= \left\{ u \in L : u \lor 0 \in P, \text{ or } u \lor \delta \in P, \text{ or } u \lor \eta \in P, \text{ or } u \lor 1 \in P \right\}$$

$$= L \not\subseteq P.$$

Figure 2: L.

469
Proposition 4.3. If M is a maximal filter of \mathcal{L}, then $E_M(\mathcal{L} - M) = \mathcal{L}$ or M is a strong fixed filter of \mathcal{L} relative to the ideal $\mathcal{L} - M$.

Proof. We have proved that $E_M(\mathcal{L} - M)$ is a filter which contains M. Then, either $E_M(\mathcal{L} - M) = M$ or $E_M(\mathcal{L} - M) = \mathcal{L}$. \hfill \square

Now, we study the lattice structure of the following sets

$$E(\kappa) = \{ E_T(\kappa), \ T \in \mathfrak{F}(\mathcal{L}) \},$$

$$\overline{E_T} = \{ E_T(\kappa), \ \kappa \in \mathfrak{I}(\mathcal{L}) \}.$$

Theorem 4.3. Let κ be a proper ideal of an MS-algebra \mathcal{L}. Then $(E(\kappa); \lor, \cap, E(1), E(\mathcal{L}))$ is a bounded distributive lattice by defining

$$E_T(\kappa) \lor E_R(\kappa) = E_{T \lor R}(\kappa),$$

$$E_T(\kappa) \cap E_R(\kappa) = E_{T \cap R}(\kappa).$$

Moreover, if \mathcal{L} is a complete lattice, then $E(\kappa)$ is complete.

Proof. The element $E(1)$ is the smallest in $E(\kappa)$. We have that $\{1\} \subseteq T$ for every $T \in \mathfrak{F}(\mathcal{L})$. This implies that $E(1) \subseteq E_T(\kappa)$. Also, $E(\kappa)$ is the largest element in $E(\kappa)$, since $T \subseteq \mathcal{L}$ for every $T \in \mathfrak{F}(\mathcal{L})$, then $E_T(\kappa) \subseteq E(\kappa)$. In fact, $E(\kappa) = \mathcal{L}$ since for every $\alpha \in \mathcal{L}$, $\alpha = 0^0 \in \mathcal{L}$.

By Lemma 4.1, $E_T(\kappa) \cap E_R(\kappa) = E_{T \cap R}(\kappa)$. It remains to prove that $E_T(\kappa) \lor E_R(\kappa) = E_{T \lor R}(\kappa)$. We have that $f, g \leq f \lor g$ for every $f \in T$ and $g \in R$. Then $f \lor g \in T, R$. Thus $T \lor R \subseteq T, R$. This implies that $E_{T \lor R}(\kappa) \subseteq E_T(\kappa), E_R(\kappa)$. It follows that $E_{T \lor R}(\kappa) \subseteq E_T(\kappa) \lor E_R(\kappa)$. On the other hand, let $z \in E_T(\kappa) \lor E_R(\kappa)$. Then $z = \lambda \lor \mu$ for some $\lambda \in E_T(\kappa)$ and $\mu \in E_R(\kappa)$. Then $\lambda \lor a^0 \in T$ and $\mu \lor b^0 \in R$ for some $a \in \kappa$ and $b \in \kappa$. Hence,

$$z \lor (a \lor b)^0 = (\lambda \lor \mu) \lor (a \lor b)^0 = (\lambda \lor a^0) \lor (\mu \lor b^0) \in T \lor R.$$

We conclude that $z \in E_{T \lor R}(\kappa)$. Then $E_T(\kappa) \lor E_R(\kappa) \subseteq E_{T \lor R}(\kappa)$. The completeness of $E(\kappa)$ is immediate. \hfill \square

Theorem 4.4. If J and K are ideals of an MS-algebra \mathcal{L} and $E_T(J) \lor E_T(K) \subseteq E_T(J \lor K)$, then $(E_T; \lor, \cap, E_T(\{0\}), E_T(\mathcal{L}))$ is a bounded distributive lattice.

Proof. The element $E_T(\{0\})$ is the smallest. Since $\{0\} \subseteq J$ for every $J \in \mathfrak{I}(\mathcal{L})$, then $E_T(\{0\}) \subseteq E_T(J)$. Also, $E_T(\mathcal{L})$ is the largest element in E_T. Since $J \subseteq \mathcal{L}$ for every $J \in \mathfrak{I}(\mathcal{L})$, then $E_T(J) \subseteq E_T(\mathcal{L})$.

From Lemma 4.1, $E_T(J) \cap E_T(K) = E_T(J \cap K)$. It remains to prove that $E_T(J \lor K) \subseteq E_T(J \lor K)$. Since $J \lor K \subseteq J, K$, then $E_T(J \lor K) \subseteq E_T(J), E_T(K)$, thus $E_T(J \lor K) \subseteq E_T(J) \lor E_T(K)$. By assumption, $E_T(J \lor K) \subseteq E_T(J \lor K)$. Hence, $(E_T; \lor, \cap, E_T(\{0\}), E_T(\mathcal{L}))$ is a bounded distributive lattice. \hfill \square
5 Conclusions and Future work

In this paper, a new definition is presented and notated by $E_T(Z)$. We proved that $E_T(Z)$ is a filter containing T, consequently $E_T(Z)$ is called an extended filter of T. We concerned in studying a special type of extended filters called fixed filters. In fact, a fixed filter T is the smallest possible extended filter containing T with respect to a set.

A generalisation of $E_T(Z)$ was introduced by defining the strong extensions donated by $E_T(Z)$. The extension $E_T(Z)$ contains both T and $E_T(Z)$. We proved by a counter example that both $E_T(Z)$ and $E_T(Z)$ are not the same. In future work, we may study the homomorphisms and topological spaces related to of $E_T(Z)$. Also, we can study the fuzzification of $E_T(Z)$.

Acknowledgement We are thankful to anonymous reviewers for their valuable comments and suggestions to improve the presentation of this paper.

Conflicts of Interest The authors declare that they have no conflict of interest

References

