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Abstract

The use of graph theory in the fields of chemistry, pharmacy, communication, maps, and aero-
nautics is significant. In order to study the properties of chemical compounds, the molecules of
those compounds aremodeled as graphs. Boiling point, enthalpy, π-electron energy, andmolec-
ular weight are a few examples of physical properties that are related to the geometric structure
of the compound. Recently, the modified symmetric division deg (mSDD(G), in short) index

is defined as the total of all adjacent vertices in pairs µυ of the term

√
1

2

(
dµ
dν

+
dν
dµ

)
. The pur-

pose of this article is to demonstrate the usefulness of mSDD(G) index through the resolution
of an interdisciplinary problem describing the structure of benzenoid hydrocarbons. With the
help of linear regression models, we have studied the physicochemical properties of benzenoid
hydrocarbons. Strong correlations were obtained, and the bounds for the same index were sub-
sequently established.
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1 Introduction

The ideal tool in the hands of the chemist, graph theory involves representation, compound
synthesis, and a variety of chemical operations. Additionally, because chemists are constantly in-
terested in creating and breaking chemical bonds, various types of structures are produced. Graph
theory makes it easier to extract information about a chemical compound from a mathematical
model of the compound. The hydrogen atoms can be ignored when modeling a compound into a
graph without losing any information about the molecule [25, 24]. Particularly in the context of
chemistry applications, graph theory has proven to be a very helpful field of study.

It has a very effective tool called the topological index that offers a lot of details about a chemi-
cal compound. Degree, distance, and eccentricity are used to categorize these topological indices
[2, 6]. Topological indices are measurable elements of a graph that are invariant to graph iso-
morphism. Topological indices are of interest because of their application in chemistry studies of
the QSPR/QSAR [5, 13]. Numerous of these topological indices are based on vertices’ degrees of
nanocones CNCK [n] [8], nanostar dendrimers [16, 18], titania nanotubes [23], network [17, 19],
silicate carbide Si2C3− I[p, q] [3], diphenylene graph [26], succinct drug [9], aluminophosphates
[28], bistar and coronal product [12], line graph of dendrimer [20], Metal organic-frameworks
[21] and many more.

We begin by outlining some fundamental graph theory notation. In this article, we only take
into account connected, simple, finite graphs. Let V = V(G) and Ξ = Ξ(G) vertex and edge set
of the graph G with n vertices and m edges respectively. The degree dµ of the vertex µ ∈ V(G)
is the number of edges incident to µ. Let ∆, δ are the maximum and minimum vertex degrees.
The vertex (µ) is called pendent, if dµ = 1. We direct the reader to [4] for any terminologies or
notations that are not clear.

The first graph invariant, named the Wiener index, to be reported as a (distance based) topo-
logical index, is defined as the halving of all vertices’ distances from one another in a graph [29].
According to references [10, 14], (QSAR)/(QSAR) are generally related to the meaning of topo-
logical indices.

The Randić index [27] was introduced in 1975 and is the first and oldest degree-based topo-
logical index. It is characterized as follows:

R(G) =
∑

µν∈Ξ(G)

1√
dµdν

. (1)

Gutman [15] the year 1972 when he first proposed the first and second Zagreb indices, which are
useful for branching questions. The variables M1(G) and M2(G), which are represented by the
following:

M1(G) =
∑

µ∈V(G)

(
dµ

)2
, and M2(G) =

∑
µν∈Ξ(G)

(
dµdν

)
, (2)

respectively. Various Zagreb index variants have been introduced in various engineering applica-
tions over the past ten years, and the modified second Zagreb index is defined by,

M∗
2 (G) =

∑
µν∈Ξ(G)

1

dµdν
. (3)
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In [7], the forgotten index was redefined as

F (G) =
∑

µν∈Ξ(G)

(
d2µ + d2ν

)
=

∑
µ∈V(G)

(
dµ

)3
. (4)

In [1], with the help of ratio between quadratic mean and geometric mean a new topological

index is defined as
∑

µν∈Ξ(G)

√
1

2

(
dµ
dν

+
dν
dµ

)
and named as the modified symmetric division deg

index. Here we denote this index as, mSDD(G). That is,

mSDD(G) =
∑

µν∈Ξ(G)

√
1

2

(
dµ
dν

+
dν
dµ

)
=

∑
µν∈Ξ(G)

√√√√1

2

(
d2µ + d2ν
dµdν

)
.

In the same paper, the authors suggested that the chemical applicability of this newly defined
topological index seems to be interesting. By this motivation, we studied the chemical appli-
cation of mSDD(G) and surprisingly we found a good correlation between some properties of
benzene derivatives (discussed in Section 2). Further, we found bounds for the same with known
parameters (See Section 4).

2 Chemical Application of mSDD(G)

This section focuses on framing the linear regression model for the properties listed in Table 1
boiling point (BP), enthalpy (E), and π-electron energy (πele). We use the following regression
model to analyze the modified symmetric division deg index (mSDD) in relation to the physical
characteristics:

ℜ = mSDDΨ+Υ, (5)

where ℜ is a physical property and Ψ and Υ are the coefficient and constant, respectively. We
discovered a correlation between the four physicochemical properties and the mSSD index that
we proposed. In [11], the concept of maximum reverse degree energy is introduced, and a linear
regression model id develop to establish the relationship between the π− electron energy and
the maximum reverse degree energy. This section presents the linear model for the index under
consideration. We use the notationsN for the population, Se for standard error of the estimate, F
for F -values, SF for significance F , and P -value for the probability value.

1. The linear regression models for Boiling point

BP = 20.24 (mSDD)− 4.46, (6)
N = 22, Se = 12.5702, F = 2191.2019, SF = 6.4834× 10−22,

P − value = 0.0000, adjusted R2 = 0.9905.

2. The linear regression models for Enthalpy

E = 11.51(mSDD) + 23.31, (7)
N = 22, Se = 24.0537, F = 192.8371, SF = 9.8906× 10−12,

P − value = 0.0000, adjusted R2 = 0.9013.
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3. The linear regression models for π-electron energy

πele = 1.085 (mSDD) + 1.906, (8)
N = 22, Se = 0.3185, F = 9779.029, SF = 2.21× 10−28,

P − value = 0.0000, adjusted R2 = 0.9978.

4. The linear regression models for Molecular wight

MW = 9.328 (mSDD) + 27.49, (9)
N = 22, Se = 6.175, F = 1920.8213, SF = 2.3904× 10−21,

P − value = 0.0000, adjusted R2 = 0.9891.

The correlation coefficient (R) between some properties of benzene derivatives, and mSSD index
is tabulated in Table 2.

Table 1: Experimental values (boiling point (BP), enthalpy (E), π-electron energy (πele) and molecular weight (MW)) of benzenoid hy-
drocarbons and its corresponding mSSD value.

Dervatives of benzene BP E πele MW mSSD
Benzene 80.1 75.2 8.000 78.11 6.000
Naphthalene 218 141.0 13.683 128.17 10.163
Phenanthrene 338 202.7 19.448 178.23 16.245
Anthracene 340 222.6 19.314 178.23 16.327
Chrysene 431 271.1 25.192 228.30 21.327
Benzo[a]anthracene 425 277.1 25.101 228.30 21.408
Triphenylene 429 275.1 25.275 228.30 21.245
Tetrcene 440 310.5 25.188 228.30 21.490
Benzo[a]pyrene 496 296.0 28.222 252.30 24.408
Benzo[e]pyrene 493 289.9 28.336 252.30 24.327
Perylene 497 319.2 28.245 252.30 24.237
Anthanthrene 547 323.0 31.253 276.30 27.490
Benzo[ghi]perylene 542 326.1 31.425 276.30 27.408
Dibenzi[a,c]anthracene 535 348.0 30.942 278.30 26.408
Dibenzo[a,h]anthracene 535 335.0 30.881 292.40 26.490
Dibenzo[a,j]anthracene 531 336.3 30.880 281.30 26.490
Picene 519 336.9 30.943 278.30 26.408
Coronene 590 296.7 34.572 300.40 30.490
Dienzo[a,h]pyrene 596 375.6 33.928 302.40 29.490
Dienzo[a,i]pyrene 594 366.0 33.954 302.40 29.490
Dienzo[a,l]pyrene 595 393.3 34.031 302.40 29.408
Pyrene 393 221.3 22.506 202.25 19.327

Table 2: Correlation coefficients (R) between some physicochemical properties of of benzene derivatives, and mSSD index.

Topological index BP E πele MW
mSSD 0.995449329 0.952742937 0.99903747 0.994941428
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Figure 1: Correlation of mSDD index with the some properties of benzene derivatives.

3 The mSDD(G) Index in Various Graph

In this section we found the unique values of mSDD(G) for the particular graphs. The proofs
are omitted as they are trivial.

Proposition 3.1. Let G be a r-regular. Then,

mSDD(G) = nr

2
.

Proposition 3.2. Let Cn be a cycle graph. Then,
mSDD(Cn) = n.

Proposition 3.3. LetKn be a complete graph. Then,

mSDD(Kn) =
n(n− 1)

2
.

Proposition 3.4. Let Km,n be a complete bipartite graph. Then,

mSDD(Km,n) = mn

√
m2 + n2

2mn
.

Proposition 3.5. Let Pn be a path graph. Then,

mSDD(P2) = 1, and mSDD(Pn) =
√
5 + (n− 3), n ≥ 3.
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Proposition 3.6. Let Sn be a star graph. Then,

mSDD(Sn) = (n− 1)

√
2− 2n+ n2

2n− 2
.

Proposition 3.7. Let Wn be a wheel graph. Then,

mSDD(Wn) = (n− 1) + (n− 1)

√
n2 − 2n+ 10

6(n− 1)
, (n ≥ 4).

4 Bounds

Here, we establish bounds for mSDD index.

Lemma 4.1. [22] Let F (x, y) =
x

y
+

y

x
, and real number a and b satisfied that 0 < a ≤ x ≤ y ≤ b.

Then 2 ≤ F (x, y) ≤ a

b
+

b

a
with left equality holds if and only if x = y and right equality holds if and only

if x = a, y = b.

Theorem 4.1. Let G be a simple connected graph of order n(≥ 3) and sizem. Then,

m ≤ mSDD(G) ≤
(
∆

δ

)
m.

The equality is true iff G is a regular graph.

Proof. For every edge e = µν ∈ Ξ(G), we have δ ≤ dµ ≤ ∆ =⇒ 2δ2 ≤ d2µ + d2ν ≤ 2∆2 and so,

mSDD(G) =
∑

µν∈Ξ(G)

√√√√1

2

(
d2µ + d2ν
dµdν

)

≤ ∆
∑

µν∈Ξ(G)

1√
dµdν

=

(
∆

δ

)
m.

By Lemma 4.1 (left equality), we have the following,

d2µ + d2ν
dµdν

≥ 2

=⇒

√√√√1

2

(
d2µ + d2ν
dµdν

)
≥ 1,

and by taking summation over the all edges we arrive at,

mSDD(G) ≥ m.

Thus the required result. It is obvious that inequality is true iff G is a regular graph.
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Theorem 4.2. Let G be a simple connected with m edges. Then,

mSDD(G) ≤
√

mF (G)
2δ2

.

Proof. We have δ ≤ dµ ≤ ∆,

( mSDD(G) )2 =

 ∑
µν∈Ξ(G)

√
d2µ + d2ν
2dµdν

2

=
1

2

 ∑
µν∈Ξ(G)

√
d2µ + d2ν
dµdν

2

.

By Cauchy-Schwarz inequality, we have

( mSDD(G) )2 ≤ 1

2

∑
µν∈Ξ(G)

[d2µ + d2ν ]
∑

µν∈Ξ(G)

1

dµdν

=
m

2

F (G)
δ2

.

Theorem 4.3. Let G be a simple connected graph with m size. Then,√
δ2
(
M∗

2 (G) +
m(m− 1)

∆2

)
≤ mSDD(G) ≤

√
∆2

(
M∗

2 (G) +
m(m− 1)

δ2

)
.

Proof. From the definition we have,

( mSDD(G) )2 =
∑

uivj∈Ξ(G)

√d2ui
+ d2vj

2duidvj

2

+ 2
∑

uivj ̸=upvq∈Ξ(G)

√d2ui
+ d2vj

2duidvj

√
d2up

+ d2vq
2dupdvq


≤

∑
uivj∈Ξ(G)

∆2

dui
dvj

+ 2
∑

uivj∈Ξ(G)

(
∆

δ

)(
∆

δ

)

≤ ∆2
∑

uivj∈Ξ(G)

1

dui
dvj

+

(
2
∆2

δ2

)(
m(m− 1)

2

)

≤ ∆2

(
M∗

2 (G) +
m(m− 1)

δ2

)
.

Similarly,

( mSDD(G) )2 ≥ δ2
(
M∗

2 (G) +
m(m− 1)

∆2

)
.

Theorem 4.4. Let G be a simple connected graph of order n(≥ 3) and size m. Then,

δ

∆
< mSDD(G) <

√
2m∆.
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Proof.

mSDD(G) =
∑

µν∈Ξ(G)

√
d2µ + d2ν
2dµdν

>

∑
µν∈Ξ(G)

√
d2µ + d2ν∑

µν∈Ξ(G)

√
2dµdν

,

provided 2δ2 ≤ d2µ + d2ν ≤ 2∆2, ∀ u, v ∈ Ξ(G). We get,∑
µν∈Ξ(G)

√
d2µ + d2ν∑

µν∈Ξ(G)

√
2dµdν

>
δ

∆
.

Since,

mSDD(G) =
∑

µν∈Ξ(G)

√
d2µ + d2ν
dµdν

<
∑

µν∈Ξ(G)

√
d2µ + d2ν

=

√ ∑
µν∈Ξ(G)

(1)
∑

µν∈Ξ(G)

[d2µ + d2ν ]

=
√
2m2∆2 =

√
2m∆.

Theorem 4.5. Let G be a simple connected graph having m edges, p pendent vertices. Then,

δ

∆
(m− p) +

√
1 + δ2

2∆
p ≤ mSDD(G) ≤ δ

∆
(m− p) +

√
1 + δ2

2∆
p.

Proof.

mSDD(G) =
∑

µν∈Ξ(G), dµ,dν ̸=1

√d2µ + d2ν
2dµdν

+
∑

µν∈Ξ(G),dµ=1

√d2µ + d2ν
2dµdν


≤

√
1

2

(
2∆2

δ2

)
(m− p) +

√
1

2

(
1 + ∆2

δ

)
p

=
∆

δ
(m− p) +

√
1 + ∆2

2δ
p.

Similarly,

mSDD(G) ≥ δ

∆
(m− p) +

√
1 + δ2

2∆
p.
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Lemma 4.2. [7] (Polya-Szego inequality) Assume that xi, yi ∈ R
+, for i = 1, 2, . . . ,m with p ≤ xi ≤ P

and q ≤ yi ≤ Q, then,

m∑
i=1

y2i

m∑
i=1

x2
i ≤ 1

4

(√
PQ

pq
+

√
pq

PQ

)2(
m∑
i=1

xiyi

)2

.

Theorem 4.6. Let G be a simple connected graph with order n and sizem. Then,

mSDD(G) ≥
m

(
δ

∆

)
1

2

(
∆

δ
+

δ

∆

) .

Proof. Choosing yi =

√
d2µ + d2ν
2dµdν

, xi = 1, P =

√
∆

δ
, q =

√
δ

∆
, and Q = q = 1 in Lemma 4.2. Then

we get,

∑
µν∈Ξ(G)

d2µ + d2ν
2dµdν

∑
µν∈Ξ(G)

(1) ≤ 1

4


√√√√√√

∆

δ
δ

∆

+

√√√√√√
δ

∆
∆

δ


2 ∑

µν∈Ξ(G)

√
d2µ + d2ν
2dµdν

2

m

 ∑
µν∈Ξ(G)

δ2

∆2

 ≤ 1

4

(
∆

δ
+

δ

∆

)2

(mSDD(G))2

(
m

δ

∆

)2

≤
[
1

2

(
∆

δ
+

δ

∆

)]2
(mSDD(G))2 .

The required result can be achieved by simplifying.

Lemma 4.3 (Ozeki inequality). [7] If xi and yi are positive n-tuples, then P, p,Q, and q are positive
numbers such that, 0 < p ≤ xi ≤ P , 0 < q ≤ yi ≤ Q, and 1 ≤ i ≤ n. Then,

n∑
i=1

x2
i

n∑
i=1

y2i −

(
n∑

i=1

xiyi

)2

≤ 1

4
n2(PQ− pq).

Theorem 4.7. Let G be a simple connected graph with order n and sizem. Then,√
δ2mM∗

2 (G)−
n2

4

(
∆

δ
− δ

∆

)
≤ mSDD(G).

Proof. Choosing xi =
√
d2µ + d2ν , yi =

1√
2dµdν

, P =
√
2∆, p =

√
2δ, Q =

1√
2δ

, and q =
1√
2∆

in
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lemma 4.3. We get,

∑
µν∈Ξ(G)

(
d2µ + d2ν

) n∑
i=1

1

2dµdν
−

 ∑
µν∈Ξ(G)

√
d2µ + d2ν
2dµdν

2

≤ n2

4

(
∆

δ
− δ

∆

)

δ2

 ∑
µν∈Ξ(G)

(1)

M∗
2 (G)− (mSDD(G))2 ≤ n2

4

(
∆

δ
− δ

∆

)

δ2mM∗
2 (G)− (mSDD(G))2 ≤ n2

4

(
∆

δ
− δ

∆

)
.

On rearranging we get the required result.

5 Conclusion

To analyze many physical and chemical properties of compounds without using costly and
time-consuming laboratory experiments, QSPR analysis, which is based on topological descrip-
tors, is a very useful statistical method. It is interesting to note that when mSDD values are corre-
lated with experimental values of benzenoid hydrocarbons, such as boiling point (BP), enthalpy
(E), molecular weight (MW), and π-electron energy (πele), mSSD has demonstrated a strong cor-
relation with correlation coefficient (see Table 2 and Figure 1 ), and there are linear regression
models that can be seen in equations (6), (7), (8), and (9).
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