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Abstract

Gold has significant economic value in a country’s economic landscape, serving as a hedge
against inflation, particularly during financial turmoil. In Malaysia, gold is known as Kijang
Emas and serves as the official bullion gold coin. The price of gold also impacts stockmarket dy-
namics, making understanding its fluctuations essential for risk-averse investors. However, the
credibility of gold as an investment has been called into question due to price volatility caused
by various factors, including the recent upheaval caused by the COVID-19 pandemic. The goal
of this study is to explore the effectiveness of the ARIMA model in modelling and forecasting
daily Kijang Emas prices inMalaysia from 2012 to 2022, divided into two phases: pre-COVID-19
and post-COVID-19. Model performance was assessed using metrics such as AIC, MAE, and
MAPE. The results that the ARIMA model can analyse and forecast Kijang Emas prices, partic-
ularly on post-COVID-19 data with high volatility and uncertainty. This insight is valuable for
investors seeking to understand market trends and develop future strategies.
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1 Introduction

Time series analysis is a powerful tool for understanding and forecasting sequential data. The
observations collected at fixed time intervals aid in the identification of patterns and trends in
various fields, including economics, finance, ecology, and environment. The primary goals of
time series analysis are to explain and summarise data as well as forecast future values. To achieve
these goals, one must identify and interpret data patterns, which can be classified into two main
components: trend and seasonality.

In this study, time series modelling and forecasting techniques were applied to analyse uncer-
tain data in financial markets, specifically gold prices. Volatility, or the variance between high and
low data values, is a critical aspect of time series analysis in finance. According to Miswan [8],
price volatility in financial markets is often measured using conditional return variance as a proxy
for asset risk. By accurately understanding and forecasting volatile values, researchers can better
assess and manage financial risk.

Our focus is on Kijang Emas, also known as "Malaysian Gold", a valuable commodity intro-
duced by BankNegaraMalaysia (BNM) on July 17, 2001. Kijang Emas has a long history of trading
and mining in Malaysia and was once an important medium of exchange before being replaced
by paper money and coins. Sukri et al. [12] stated that gold is a valuable investment for both the
short and long term and is considered valuable worldwide. Gold is also a liquid asset that can be
easily converted into paper money. Due to unpredictable economic instability, investors often use
gold as a hedge against risk and as a means of storing wealth.

The COVID-19 pandemic has had a significant impact on global markets, including Malaysia.
On March 18, 2020, the Malaysian government implemented the movement control order to curb
the spread of the virus. The country’s economy was further affected by the declaration of emer-
gency throughout the country by Yang Di-Pertuan Agong on January 12, 2021. These events
caused gold prices to fluctuate unevenly over time [1]. Accurate gold price forecasting is critical
for understanding international monetary policy. With a thorough understanding of this variable,
economists can more effectively navigate the challenges of promoting economic development in
the post-COVID-19 era [9].

This study aims to investigate Kijang Emas price trends by determining an appropriate time
series model and evaluating its performance in forecasting. The modelling of Kijang Emas prices
was evaluated over three phases: the overall time span, pre-COVID-19, and post-COVID-19. The
ultimate goal was to identify the appropriate ARIMAmodel in providing reliable forecasts for this
uncertain dataset.

2 Related Works

The COVID-19 pandemic has presented unprecedented challenges to financial and commodity
markets, inspiring a growing body of research [15]. InMalaysia, the government implemented the
Movement Control Order (MCO) on 18th March 2020, extending it subsequently to the Recovery
Movement Control Order (RMCO) until 31st December 2020 [7]. These measures were enacted
to mitigate the spread of the disease. The period before the first MCO declaration represents the
pre-COVID-19 phase, while the initiation of the MCO signifies the inception of the new norm
practices or the post-COVID-19 phases. The pandemic has placed immense stress on all aspects
of the economy, not just agriculture and food. However, the impact of the crisis on commodity
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markets remains underexplored.

Gold prices inMalaysia are influenced by globalmarket demand but are regulated by the BNM.
According to Khamis and Awang [6], Gold prices vary by country and currency, and a country’s
economic development success can influence its value. Gold prices are denominated inUS dollars,
and as such, they are closely linked to fluctuations in the value of the US dollar.

The uncertain nature of gold prices during pre-COVID-19 attracted attention from many re-
searchers and analysts to develop forecasting models due to gold being seen as an inflation hedge
and a proven store of value. According to Rahmadia and Febriyani [17], the gold market is one of
the three sectors most affected by the COVID-19 pandemic due to the uncertain global situation,
and its price cannot be forecast with previous forecasting models. Due to a lack of research and
literature following COVID-19, investors and investment institutions were unable to make accu-
rate decisions in forecasting gold prices [1]. Therefore, this study aims to contribute to the current
literature and assist researchers in making informed decisions based on current gold price trends.

Statistical analysis of time series data has a long history, with forecasting being a primary ob-
jective in many cases. Although the specific goals of time series analysis may vary, forecasting is
often a major component of such studies. One popular time series model is the Box-Jenkins au-
toregressive integratedmoving average (ARIMA)model, whichwas first proposed byGeorge Box
and Gwilym Jenkins in 1970. The ARIMA model has been widely used in practical applications
due to its ability to handle non-stationary data. Gold prices have been shown to follow random
movements and exhibit non-stationary characteristics, making ARIMA a potentially useful fore-
casting model [18]. The ARIMA model has become popular in financial market forecasting due
to its statistical nature in providing accurate short-term forecasts and ease of application [6].

The Box-Jenkins ARIMA model has not only been applied in financial and economic markets
but also in social and environmental sectors. For instance, Swain et al. [14] applied this model to
forecast monthly rainfall in the Khordha district of Odisha from 1901 to 2002. The result demon-
strates that ARIMA(1,2,1)(1,0,1)[12] outperforms others. Forecasts from the model were found
to be in excellent agreement with observed monthly rainfall data, confirming its potential for fu-
ture applications in the study area. Abhilash et al. [2] used the ARIMA model on pollution data
such as NO2, PM10, and SO2. The results show that the data for PM10 and NO2 were station-
ary, resulting in a suitable forecasting model with the actual plot, while the remaining plots were
analysed using non-stationary data. PM10 was identified as the dominant pollutant, while SO2
contributed the least.

Didiharyono and Syukri [3] conducted a social study using the ARIMAmodel to forecast open
unemployment rates in South Sulawesi. The unemployment rate is one of the socio-economic is-
sues that need to be addressed in all developing countries, including Indonesia. TheARIMA(1,2,1)
model was discovered to be the best time series model for forecasting. In the healthcare setting,
the ARIMA model was applied by Zheng et al. [19] to forecast infectious disease morbidity be-
cause it can consider trend changes, periodic changes, and random disturbances in time series.
The ARIMA-ARCH hybridization model was used and the comparative analysis showed that the
combined ARIMA(1,1,2)(1,1,1)[12]-ARCH(1) model was more effective in forecasting tubercu-
losis morbidity.

In financial applications, several researchers [13, 16, 5] found that the ARIMAmodel was able
to capture the patterns and trends of each financial price movement and predict its future values
during the COVID-19 pandemic. Nonetheless, despite the outstanding results, few studies have
examined the performance of the ARIMAmodel during the pre- and post-COVID-19 phases, ow-
ing to the massive impact of the pandemic on the financial market [17].
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According to the literature review, the Box-Jenkins ARIMA model has been widely used and
has always been the underlying model in many areas of time series analysis. Therefore, the focus
of this study will be on the application of the ARIMA model in modelling and forecasting Kijang
Emas prices pre- and post-COVID-19.

3 Materials and Methods

Figure 1 depicts the overall research framework, which began with data collection. Only sta-
tionary data was considered during the ARIMA model development process. As a result, sta-
tionarity testing was performed, followed bymodel identification, model diagnostics, and, finally,
model forecasting.

Figure 1: The overall research framework in forecasting Kijang Emas prices using ARIMA model.
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3.1 Stationary Testing

Stationarity is a key concept in time series analysis, and Box-Jenkinsmodels such as theARIMA
employ it before analysis and model building. Stationary data refers to data that has a constant
mean, variance, and autocorrelation structure over time. Non-stationary data is data that de-
creases and increases at different rates over different time intervals, and some modifications can
be made to achieve stationarity.

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test was conducted to determine data station-
arity. Consider the time series model as defined in Equation (1),

∆yt = µDt + ϕt + ϵt, (1)

whereϕt = ϕt−1+ut andDt is the determinant component, ut ∼ I.I.D(0, σ2), and ϵt ∼ I.I.D(0, σ2
u).

The hypothesis test for the KPSS test against equation (1) is H0 : σ2
u = 0 and H1 : σ2

u > 0 with
statistical tests of KPSS =

T−2 ∑T
t=1 Ŝ2

t

λ̂2
, with Ŝt =

∑t
j=1 ûj is the cumulative error function and

λ̂2 is the variance of the error ϵt. Under the null hypothesis, if the p-value of the KPSS test is less
than a certain level of significance, such as 0.05, there is sufficient evidence that the data trend is
constant. If the null hypothesis is rejected, the data must be modified using techniques such as
differentiation and Box-Cox transformation.

Differencing can be used to reduce a nonhomogeneous stationary time series process to a sta-
tionary time series process. In general, the difference is expressed in Equation (2),

∆dyt = (1−B)d + yt, (2)

where yt is the value of y at time t, B is for the backward shift operator, and d is the difference
level. The differencing level on the original data series is called the order of integration, denoted
by d. Generally, first- and second-order differences can produce stationary data.

The Box-Cox transformation is commonly used to stabilise the variance of a non-stationary time
series process [4]. The Box-Cox transformation represents a family of power transformations that
combine and extend the transformation options to find the optimal normalising transformation
for each variable. The Box-Cox transformation is defined in Equation (3),

y
(λ)
t =

{
yλ
t −1
λ ;λ ̸= 0

log(yt);λ = 0
, (3)

where yt is the variable for transformation and λ is the transformation parameter.

3.2 Volatility Testing

Volatility is a phenomenon characterized by the dynamic variation of the conditional variance
in a time series. In essence, it denotes that the variance of the time series is not constant across
different time periods. An effective method for quantifying the volatility of data involves the ap-
plication of a Jarque-Bera (JB) test, where the measurement of kurtosis serves as a key descriptive
statistic associated with the JB test. Kurtosis, in this context, gauges the peakedness of the distri-
bution of the series. For data conforming to a normal distribution, the kurtosis value is expected
to be three. However, in instances of heightened volatility, signifying a more pronounced peak,
the kurtosis value often exceeds three. This condition is commonly referred to as leptokurtosis or
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being leptokurtic. The null hypothesis for JB test is written asH0 : normally distributed versus its
alternative hypothesis H1 : non-normally distributed. The sample kurtosis and JB test statistics
can be defined as in Equation (4) and Equation (5),

K =
1

n

( ∑n
i=1(xi − x̄)4(

1
n

∑n
i=1(xi − x̄)2

)2
)
, (4)

JB =
n

6

(
S2 +

(EK)2

4

)
, (5)

where S =
1

n

( ∑n
i=1(xi − x̄)3(

1
n

∑n
i=1(xi − x̄)2

)3/2
)

is the sample skewness and EK = K − 3 is the excess

kurtosis of the data. Under the null hypothesis, the test statistics is distributed as chi-squared
distribution, χ2 with two degrees of freedom.

3.3 Box-Jenkins ARIMAModel

After achieving data stationarity in the previous step, the autocorrelation function (ACF) and
partial autocorrelation function (PACF) plots were used to determine the parameters for moving
average (MA), q and autoregressive (AR), p. The Box-Jenkins ARIMA model, generally written
as ARIMA (p, d, q) can be defined as in Equation (6),

(1− ϕ1B − ...− ϕpB
p)(1−B)dyt = ϑ+ (1− θ1B − ...− θqB

q)ϵt, (6)

where ϑ is a constant coefficient, ϕp is the parameter coefficient of AR and θq is the parameter
coefficient of MA. The adequacy of these ARIMA models is then evaluated.

3.4 Model Diagnostic

Model diagnostic analysis evaluates the adequacy of the model during the construction of a
time series model. Model diagnostics were conducted to determine whether the model is suitable
for the data. Adjustments or alternative time series models may be required if the model does
not accurately represent the entire dataset. The Ljung-Box test is one of the statistical tests used in
model diagnostic analysis. This test examines sample errors using an ACF plot to determine the
null hypothesis that the data is independently distributed, as well as whether the chosen time se-
riesmodel is appropriate for the data being analysed andmakes necessary adjustments to improve
forecast accuracy. The null hypothesis is written asH0 : r1 = r2 = ... = rn, whereas the alternative
hypothesis is written as H0 : ri ̸= 0 for at least one i, where i = 1, 2, ..., n. The Ljung-Box test can
be represented as Equation (7),

Q = n(n+ 2)

r∑
i=1

r2i
n− i

, (7)

where r2i is the sample autocorrelation of residual at i andn represents the number of observations.
Under the null hypothesis, the distribution of the Ljung-Box test statistic is skewed against the chi-
squared distribution, χ2 with (k − p− q) degrees of freedom.
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3.5 Forecasting

Forecasting is essential for operational control and planning in many areas, including quality
control, investment analysis, financial planning, and production management. Certain criteria
must be met to select the best model based on forecast values. Before forecasting, the best model
based on model values must be selected. Modelling was done with in-sample (training) data,
while forecasting was done with out-of-sample (testing) data. The Akaike information criterion
(AIC) is one of the model evaluation criteria used in determining the goodness of fit of the model.
The AIC can be expressed using Equation (8),

AIC = 2k − 2ln(L̂), (8)

where k is the number of model parameters and L̂ is the maximum likelihood of the model. The
model with the lowest AIC is regarded as having the best fit for the data.

Following that, the model evaluation criteria for forecasting against test data was tested us-
ing evaluation values such as mean absolute error (MAE) and mean absolute percentage error
(MAPE) [11]. These evaluation metrics determine the accuracy of the time series model in fore-
casting out-of-sample data. MAE is a measure of the error between the observed true value and
the predicted value in pairs, while MAPE is a measure in percentage terms and can be calculated
as the average absolute per cent error divided by the actual value at each time period. MAE and
MAPE are expressed in Equation (9) and Equation (10), respectively.

MAE =

∑n
t=1 |yt − ŷt|

n
, (9)

MAPE =

∑n
t=1

∣∣∣yt−ŷt

yt

∣∣∣
n

× 100, (10)

where yt is the actual value at time t, ŷt is the predicted value at time t, and n is the number of
observations. The best model for forecasting data is one with the lowest MAE and MAPE.

4 Results and Discussion

The Kijang Emas price dataset for this study is shown in Table 1, which was obtained from the
BNM website. The dataset contains 2685 data points representing the selling price of 1 ounce of
Kijang Emas in Malaysian Ringgit (MYR) from January 3, 2012, to December 30, 2022.

Table 1: Partial Kijang Emas price dataset in MYR.

Weight (Oz) 1 0.5 0.25
Date Selling Buying Selling Buying Selling Buying

3/1/2012 5,283 5,078 2,691 2,539 1,370 1,270
4/1/2012 5,346 5,139 2,723 2,570 1,387 1,285

. . . . . . .

. . . . . . .

. . . . . . .
30/12/2022 8,506 8,166 4,333 4,083 2,207 2,042

∗Reference : https://www.bnm.gov.my/kijang-emas-prices
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The data was divided into three phases: pre-COVID-19, post-COVID-19, and the overall time
span. Figure 2 depicts the Kijang Emas selling price from the dataset plotted against the time
index for three phases: (a) the pre-COVID-19 phase, (b) the post-COVID-19 phase, and (c) the
overall time span.

Figure 2: Kijang Emas 1oz selling price vs time (January 2012 - December 2022).

The analysis begins with the KPSS test for stationary testing. Figure 2 depicts the increasing
trend across all three phases. The post-COVID-19 increase pattern is slower than the pre-COVID-
19 timeline. The data was then transformed using the Box-Cox transformation and differencing to
achieve stationary in the dataset. For the pre-COVID-19 phase, the KPSS test yielded a p-value of
0.0100, indicating that the time series is non-stationary. The value of lambda for the Box-Cox trans-
formation is 1, indicating that no transformation is required. After the first-order differencing, the
KPSS test yielded a p-value of 0.1000, which is greater than the 5% significant level, indicating that
the time series has achieved stationarity.

For the post-COVID-19 phase, the KPSS test yielded a p-value of 0.0100, indicating that the time
series is non-stationary. Table 2 shows the result of the KPSS test and the Box-Cox lambda. The
value of lambda for the Box-Cox transformation is 1, indicating that no transformation is required.
After the first-order differencing, the KPSS test yielded a p-value of 0.1000, which is greater than a
5% significant level, indicating that the time series has achieved stationarity. For the overall time
span, theKPSS test yielded a p-value of 0.0100, indicating that the time series is non-stationary. The
value of lambda for the Box-Cox transformation is 1, indicating that no transformation is required.
After the first-order differencing, the KPSS test yielded a p-value of 0.1000, which is greater than
a 5% significant level, indicating that the time series has achieved stationarity.

Table 2: The result of the KPSS test and box-cox transformation for the three phases.

KPSS Test
Before differencing After first differencing

Phase Box-Cox lambda Test statistics p-value Test statistics p-value
Pre-COVID-19 1 14.60943 0.0100 0.1789251 0.1000
Post-COVID-19 1 2.48916 0.0100 0.07820052 0.1000

Overall time span 1 28.93033 0.0100 0.1546622 0.1000

Figure 3 depicts the first-order differencing of the data for all three phases, where (a) is the first-
order difference of the pre-COVID-19 phase, (b) is the first-order difference of the post-COVID-19
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phase, and (c) is the first-order difference of the overall time span. As shown in Figure 3, the time
series are stationary.

Figure 3: First-order difference of Kijang Emas prices data.

Upon achieving stationarity, the next step involves conducting volatility testing to quantify and
assess the volatility of the data at various phases, subsequent to the first difference level as in Ta-
ble 3. Across the pre-COVID-19, post-COVID-19, and the overall time span phases, the kurtosis
values are observed to be 20.35421, 16.7131, and 22.74529, respectively. These values, surpassing
the threshold of three, signify a pronounced peak and high volatility within each phase’s distri-
bution. The p-values resulting from the Jarque-Bera (JB) test for these three distinct phases are
all less than 2.2e-16, falling below the 5% significance level. This suggests the rejection of the null
hypothesis, indicating that the time series is non-normally distributed across the specified phases.

Table 3: The result of Jarque-Bera test for the three phases.

Phase Kurtosis Test statistics p-value
Pre-COVID-19 20.35421 37605 2.2e-16
Post-COVID-19 16.7131 7999.4 2.2e-16

Overall time span 22.74529 65277 2.2e-16

Subsequently, the dataset corresponding to each phase will be partitioned into training and
testing sets, maintaining an 80:20 ratio. This approach ensures that the model’s efficacy is as-
sessed through the training dataset, while the testing dataset remains independent for accurate
forecasting evaluations. The model identification process began by computing the sample ACF
and partial PACF. Figure 4 depicts the ACF and PACF correlograms for the first difference level
of the time series for all three phases, where (a) is the residuals plot of first-order difference for
the pre-COVID-19 phase, (b) is the residuals plot of first-order difference for the post-COVID-19
phase, and (c) is the residuals plot of first-order difference for the overall time span.
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Figure 4: The residuals plots of the first-order difference of Kijang Emas price data.

Figure 4(a) shows that the values of p and q are both 24 for the pre-COVID-19 phase. Be-
cause these values are too large to compute, p = 1 and q = 2 were used instead. Therefore,
the following ARIMA models were considered: ARIMA(1,1,0), ARIMA(0,1,1), ARIMA(1,1,1),
ARIMA(2,1,0), ARIMA(0,1,2), ARIMA(2,1,1), ARIMA(1,1,2), and ARIMA(2,1,2). In both Fig-
ure 4(b) and Figure 4(c), the values of p and q are 1 and 6, respectively. Consequently, eight
models were evaluated with the same specifications for both the post-COVID-19 phase and the
overall time span: ARIMA(1,1,1), ARIMA(1,1,0), ARIMA(0,1,1), ARIMA(1,1,6), ARIMA(6,1,0),
ARIMA(0,1,6), and ARIMA(6,1,6).

After identifying potentialmodels, the parameters of theARIMAmodelswere estimated using
R software. The parameters of the ARIMA models were estimated using maximum likelihood
estimation. AIC determined the best model for fitting the training dataset, while MAE andMAPE
determined the best model for forecasting the testing dataset. The model with the lowest value of
the given criteria was chosen as the best model. Next, Ljung-Box test will be conducted. Table 4
compares the criterion and diagnostic values of the ARIMA models for each of the three phases.
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Table 4: The Result of AIC, MAE, MAPE and Ljung-Box test Values of ARIMAModels.

Training Testing Ljung-Box test
Phase Model AIC MAE MAPE χ2 value p-value
Pre- ARIMA(1,1,0) 24529.9 24.4113 0.38996 0.01635 0.898

COVID-19 ARIMA(0,1,1) 24530.9 24.4430 0.39047 0.02128 0.884
ARIMA(1,1,1) 24531.9 24.4282 0.39023 0.01037 0.919
ARIMA(2,1,0) 24531.9 24.4313 0.39028 0.01399 0.906
ARIMA(0,1,2) 24531.9 24.4523 0.39064 0.01097 0.917
ARIMA(2,1,1) 24533.9 24.4176 0.39006 0.01569 0.900
ARIMA(1,1,2) 24533.9 24.6867 0.39449 0.00188 0.965
ARIMA(2,1,2) 24534.9 25.7314 0.41234 0.25333 0.615

Post- ARIMA(1,1,1) 9253.7 37.5821 0.45076 0.00075 0.978
COVID-19 ARIMA(1,1,0) 9254.6 37.4037 0.44861 0.00143 0.969

ARIMA(0,1,1) 9254.3 37.4469 0.44912 0.00068 0.979
ARIMA(1,1,6) 9255.3 38.7209 0.46487 0.00209 0.964
ARIMA(6,1,1) 9256.5 38.4588 0.46130 5.07e-05 0.994
ARIMA(6,1,0) 9254.7 38.4568 0.46127 1.27e-05 0.997
ARIMA(0,1,6) 9254.9 38.5195 0.46202 5.52e-06 0.998
ARIMA(6,1,6) 9254.7 38.1086 0.45733 0.00238 0.961

Overall ARIMA(1,1,1) 33925.8 36.1390 0.44293 0.00972 0.922
time span ARIMA(1,1,0) 33925.9 35.9054 0.44004 0.00051 0.982

ARIMA(0,1,1) 33925.7 35.9250 0.44029 0.00043 0.983
ARIMA(1,1,6) 33930.6 36.8869 0.45214 1.12e-06 0.999
ARIMA(6,1,1) 33930.5 36.9119 0.45245 1.51e-05 0.997
ARIMA(6,1,0) 33928.4 36.5968 0.44856 0.00024 0.988
ARIMA(0,1,6) 33928.7 36.6719 0.44948 0.00027 0.987
ARIMA(6,1,6) 33934.1 37.9066 0.46456 0.80288 0.370

According to Table 4, ARIMA(1,1,0) has the lowest AIC, MAE, and MAPE values of 24529.9,
24.4113and 0.38996, respectively. As a result, ARIMA(1,1,0) is the best model for fitting the Kijang
Emas price data and forecasting the price for the pre-COVID-19 phase. ARIMA(1,1,1) has the low-
est AIC for the post-COVID-19 phase, which is 9253.7 while ARIMA(1,1,0) has the lowest MAE
and MAPE values which are 37.4037 and 0.44861 respectively. This means that ARIMA(1,1,1)
is the best model for modelling Kijang Emas prices, whereas ARIMA(1,1,0) is the best model
for forecasting. For overall time span phase, ARIMA(0,1,1) has the lowest AIC which is 33925.7
while ARIMA(1,1,0) has the lowestMAE andMAPE values which are 35.9054 and 0.44004 respec-
tively. Thismeans that ARIMA(0,1,1) is the bestmodel formodelling Kijang Emas prices, whereas
ARIMA(1,1,0) is the best model for forecasting. Since the difference in modelling and forecasting
performance between the twomodels is less than 1%, it can be concluded that the simplest model,
ARIMA(1,1,0), is the best model for both the post-COVID-19 and overall time span phases.

Model diagnostics uphold theARIMAmodel’s assumption that there is no correlation between
past errors and independently distributed errors. The Ljung-Box testing revealed that the best
model chosen for each of the three phases resulted in p-values greater than the critical value at
the 5% significant level of 0.898, 0.969, and 0.982, respectively. As a result, the data is distributed
independently, and themodel fits the data provided. The Ljung-Box test value for each best model
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in each phase is also shown in Table 4.

The values of MAE and MAPE for the pre-COVID-19 phase were lower than for the post-
COVID-19 and overall time span phases based on the forecasting performance of the ARIMA
models. This could be due to the stability of gold prices before the pandemic, as opposed to
the volatility of prices during and after the pandemic. The post-COVID-19 phase has the high-
est MAE and MAPE values, which is consistent with the findings of a study by Rosli et al. [10],
which examined the forecasting performance of the Malaysian stock market during the COVID-
19 pandemic, during which prices were highly fluctuating, indicating that the stock price rapidly
increased and fell in a short period of time.

The coefficients of parameters for each model were estimated using R software, and the equa-
tions of the models are shown in Table 5 by substituting the given coefficients into Equation (6).
ARIMA(1,1,0) for the pre-COVID-19 phase, ARIMA(1,1,0) for the post-COVID-19 phase, and
ARIMA(1,1,0) for the overall time span phase are given in Equation (11) to Equation (13).

yt = 0.9195yt−1 + 0.0669yt−2 + ϵt, (11)
yt = 0.9341yt−1 + 0.0659yt−2 + ϵt, (12)
yt = 0.9670yt−1 + 0.0321yt−2 + ϵt. (13)

Table 5: The result of the KPSS test and box-cox transformation for the three phases.

Phase Model Equation
Pre-COVID-19 ARIMA(1,1,0) (1+0.0805B)(1-B)yt = ϵt
Post-COVID-19 ARIMA(1,1,0) (1+0.0659B)(1-B)yt = ϵt

Overall time span ARIMA(1,1,0) (1+0.0321B)(1-B)yt = ϵt

Figure 5 shows the forecasting results for eachmodel in each phase one year or 365 days ahead:
(a) ARIMA(1,1,0) for the pre-COVID-19 phase, (b) ARIMA(1,1,0) for the post-COVID-19 phase,
and (c) ARIMA(1,1,0) for the overall time span phase. The figures demonstrate the ARIMAmod-
els’ promising performance in forecasting daily Kijang Emas prices, with the trend in Figure 5(a)
closely following the actual prices in Figure 2(c), and both Figures 5(b) and Figure 5(c) forecasting
the same trend.

Figure 5: Kijang Emas price forecasting results for the 365 days ahead.
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5 Conclusions

The performance of the ARIMA models used in modelling and forecasting the daily Kijang
Emas price data series has been investigated in three phases: pre-COVID-19, post-COVID-19, and
the overall time span. The dataset was subjected to differencing to address the non-stationary
nature of the time series. According to the empirical results of the 2685-day Kijang Emas price
data series, the ARIMA models produce optimal results and are suitable for forecasting the time
series for each phase, specificallyARIMA(1,1,0) for all three different phases, pre-COVID-19, post-
COVID-19 and the overall time span phases. In short, the Box-Jenkins ARIMA model is suitable
for analysing and forecasting daily Kijang Emas prices. The ARIMA model, despite its strength
and flexibility, cannot handle the volatility and nonlinearity found in many data series. The gold
market, for example, has been volatile since it began actively trading on international markets in
1967. As a result, other forecasting models, such as generalised autoregressive conditional het-
eroscedasticity (GARCH) or long short-term memory (LSTM), may be used in future studies.
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