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Abstract

This study investigates a class of mathematical operators known as the Bessel-Riesz operators,
defined in Euclidean space Rn, given by,

Tµ,νf(z) =

∫
Rn

Kµ,ν(|z − w|)f(w)dν(w), for z ∈ R
n. (1)

Here, Kµ,ν is called the Bessel-Riesz kernel. It can be expressed as a multiple of the Bessel
kernel Jν and the Riesz kernel Kµ. These operators originated from the Schrödinger equation,
which describes particle behavior in quantum mechanics. The primary goal of this research
is to explore the behavior of these operators when applied to Lebesgue spaces with different
measures, focusing on their boundedness and the conditions under which these operators act
predictably. The research aims to establish foundational results for how these operators behave
in spaces such as Rn with the Lebesgue measure, as well as in spaces with other measure types
like dρ(w).
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1 Introduction

Bessel-Riesz operators first emerged from the Schrödinger equation, a linear partial differential
equation that models the quantum-mechanical wave function of particles. This equation provides
a quantumdescription ofmotion similar to howNewton’s second law describesmotion at the clas-
sical scale. In particular, integrals related to the Schrödinger equation were explored by [10], who
investigated their boundedness properties, particularly in the context of Morrey spaces. These
operators are used to model the behavior of quantum systems and can be applied to understand
functions within Lebesgue spaces.

Kurata et al. [10] also studied how these operators estimate the Schrödinger operator in Mor-
rey spaces, providing insights into their relationship with quantum phenomena that adhere to
Newton’s law. Companato spaces, which combine smoothness and integrability properties, pro-
vide a natural framework to study these operators. Functions inCompanato spaces exhibit varying
degrees of regularity at different scales, making them suitable for analyzing the boundedness and
properties of singular integral operators like the Bessel-Riesz operators.

This work builds upon previous research by considering Bessel-Riesz operators, Riesz poten-
tials, and fractional integrals in the context of Companato spaces. These studies aim to provide a
deeper understanding of the operators’ behavior and their interplay with mixed regularity func-
tion spaces, which is crucial for solving partial differential equations.

In summary, this research explores the behavior of Bessel-Riesz operators in different mathe-
matical settings, providing essential results that contribute to the understanding of these operators
in both classical and quantum contexts.

2 Related Works

The study of Riesz potentials and Bessel-Riesz operators has a long history, dating back to the
1920s. Hardy and Littlewood’s seminal works in [7, 6] examined the boundedness of fractional
integrals in Lebesgue spaces. In the 1950s, Sobolev [15] proved that Riesz potentials are bounded
in certain function spaces. In the following decades, researchers like [13, 9] explored the bound-
edness of fractional integrals on non-doubling measure spaces. Their findings were extended
to more general metric spaces by [4], who addressed the boundedness of fractional integrals on
spaces with non-doubling measures.

More recently, [14] studied the behavior of fractional integrals in Morrey spaces, and [2] ex-
tended these results to quasi-metric spaces. The work of [10] also contributed significantly by
demonstrating the boundedness of Bessel-Riesz operators on Lebesgue spaces, emphasizing the
role of the kernel norm in characterizing operator boundedness. The results by [3] further stud-
ied the relationship between fractional integrals and weighted norms in Lebesgue spaces, offering
important insights into the behavior of these operators. This research continues these lines of
investigation by considering Bessel-Riesz operators in the context of Companato spaces, with a
particular focus on establishing boundedness results for these operators in Lebesgue spaces and
spaces with various measures.
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2.1 Bessel-Riesz operators in Lebesgue spaces with measure dν(w)

This study examines Bessel-Riesz kernels on Lebesgue spaces with different measures. These
operators, related to Riesz potentials, have been extensively analyzed in spaces likeMorrey spaces
[14, 1]. Kurata et al. [10] demonstrated their boundedness in Lebesgue spaces, a key result in
harmonic analysis.

Applying Young’s inequality [16], we extend these ideas to function spaces like Campanato
spaces and explore operator regularity. This study examines two types of Bessel-Riesz kernels:
the classical Bessel-Riesz kernel on Lebesgue spaces with Lebesgue measure and the kernel on
Lebesgue spaces with measure dν(w). These operators are closely related to Riesz potentials and
fractional integrals, which have been extensively studied in spaces like Morrey and Euclidean
spaces.

Thework of [14, 1] and others has deepened our understanding of these operators’ behavior in
various settings, including non-doubling measure spaces and metric spaces. In particular, Kurata
et al. [10] demonstrated the boundedness of Bessel-Riesz operators on Lebesgue spaces, a key
result in understanding their role in harmonic analysis.

The application of Young’s inequality [16] and other results from harmonic analysis provides
a powerful framework to study the boundedness of these operators. This research extends these
ideas to more general function spaces, including Companato spaces, and explores the interplay
between these operators and the regularity properties of the functions they act upon.

3 Materials and Methods

This section describes the methodology used to obtain the results presented in this paper. The
research explores the boundedness of Bessel-Riesz operators in Lebesgue spaces, with a focus
on understanding the conditions under which these operators act predictably. The study also
considers different measures, including the Lebesgue measure and measures dν(w), to establish
general results that hold in a variety of settings.

The key mathematical tools used in the analysis include the norm of the Bessel-Riesz kernels,
the application of Young’s inequality, and the theory of fractional integrals. These tools are em-
ployed to demonstrate the boundedness of the operators in various spaces, with particular atten-
tion to the regularity properties of the spaces under consideration.

3.1 Young’s inequality

Weuse functional analysis andmeasure theory approaches to prove Young’s inequality (Theo-
rem 4.1). The proof involves manipulating integral expressions and applying Hölder’s inequality.
Additionally, we utilize the properties of Lebesgue spaces as well as convolutions in Euclidean
spaces.
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3.2 Proof of Theorem 4.2

The proof of Theorem 4.2 requires establishing the link between the Bessel-Riesz kernel and
its Ls norm. We use approaches such as dividing the integral into dyadic intervals, estimating the
integral over each interval, and leveraging the kernel’s asymptotic behavior for large and small
values of |z − w|.

3.3 Proof of Lemma 4.1

To verify Lemma 4.1, we define the circumstances under which the Bessel-Riesz kernel belongs
to L1(ν). The proof consists of partitioning the integral into sections where |z| < R and |z| ≥ R,
estimating each integral independently, and utilizing the features of the doubling measure ν.

3.4 Proof of Theorem 4.3

To prove Theorem 4.3, we must first demonstrate the link between the Bessel-Riesz kernel and
itsLρ(ν) norm for 1 ≤ ρ < ∞. We applymethods similar to those employed in the proof of Lemma
4.1, but generalize the result to Lρ(ν) spaces for 1 ≤ ρ < ∞.

3.5 Proof of Theorem 5.1

To prove Theorem 5.1, we show the boundedness of the Bessel-Riesz operator Tα,β on Lρ(ν)
spaces for 1 ≤ ρ < ∞. The proof uses Minkowski’s inequality and Lebesgue space features to
estimate the norm of Tα,βf .

3.6 Proof for Corollary 5.1

Corollary 5.1 is derived from Theorem 5.1 by specializing in the case τ = 1. We modify the
proof of Theorem 5.1 by exploiting the features of L1(ν) spaces. The proofs include techniques
from functional analysis, measure theory, and classical inequalities likeHölder’s andMinkowski’s.

4 Results

We define Lρ := Lρ(Rn) as for any function f that is quantifiable, such that 1 ≤ ρ < ∞:

∥f∥Lρ(Rn) =

(∫
Rn

|f(z)|ρ dz
)1/ρ

< ∞.
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4.1 Bessel-Riesz on Lebesgue spaces with Lebesgue measure

4.1.1 Young’s inequality on Lebesgue spaces

Young’s inequality can determine if Bessel-Riesz operators on Lebesgue spaces are bounded.

Theorem 4.1. (Young’s inequality)
Let 1 ≤ ρ, σ, τ ≤ ∞ satisfy,

1

τ
+ 1 =

1

ρ
+

1

σ
.

Then, for all f ∈ Lρ(Rn) and g ∈ Lσ(Rn), we have,

∥f ∗ g : Lτ (Rn)∥ ≤ ∥g : Lσ(Rn)∥∥f : Lρ(Rn)∥.

4.1.2 The kernel

Suppose 0 < µ < n and 0 < ν. We define K : R+ → R+ by the following:

Kµ, ν(t) :=
tµ−n

[1 + t]ν
, t ∈ R+.

For 1 ≤ ρ < ∞, we define Kµ,ν ∈ Lρ(Rn) if and only if,

∥Kµ,ν : Lρ(Rn)∥ =

(∫
Rn

|Kµ,ν(|z − w|)|ρdz
)1/ρ

< ∞.

To calculate the range of ρ such that ∥Kµ,ν : Lρ(Rn)∥ < ∞, we need to find the values of ρ for
which the inequality,

1 ≤ n

n+ ν − µ
< ρ <

n

n− µ
,

holds, given 0 < µ < n and 0 ≤ ν.

From the previous analysis, we know:

1. ν ≤ µ (as ν − µ ≤ 0),

2. ρ < 0,

3. n > 0.

We also know that for the inequality 1 ≤ n

n+ ν − µ
< ρ <

n

n− µ
to hold, we need to satisfy:

n

n+ ν − µ
<

n

n− µ
,

which simplifies to:

n− µ < n+ ν − µ or ν > 0.
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This condition is always satisfied given that 0 ≤ ν.

Now, let’s consider the upper bound:

n

n+ ν − µ
< ρ,

which simplifies to:

n < ρ(n+ ν − µ),

or equivalently,

ρ(n− µ) < n ⇒ ρ <
n

n− µ
.

Thus, to ensure ∥Kµ,ν : Lρ(Rn)∥ < ∞, we need:

1. ν ≥ 0,

2. ρ < 0,

3. n

n− µ
> ρ.

The final range of ρ satisfying these conditions is:

1 ≤ n

n+ ν − µ
< ρ <

n

n− µ
.

Thus, the calculation for ρ depends on the values of n, µ, and ν.

It is clear from the above definition that,

∥Kµ,ν : Lρ(Rn)∥ < ∞ ⇔ 1 ≤ n

n+ ν − µ
< ρ <

n

n− µ
.

Additionally, we have the following result:

Theorem 4.2. Suppose we haveKµ,ν ∈ Lρ(Rn). Then, for every r > 0,

∥Kµ,ν : Lρ(Rn)∥ρ ∼
∑
k∈Z

(2kr)(µ−n)ρ+n

(2kr)νρ
, 1 ≤ n

n+ ν − µ
< ρ <

n

n− µ
.

Proof. On the other hand, we also have,∫
Rn

Kµ,ν(|z − w|)ρdw =
∑
k∈Z

(2kr)(µ−n)ρ

(1 + (2kr))νρ

∫
2kr≤|z−w|≤2k+1r

dw

≤ C1

∑
k∈Z

(2kr)(µ−n)ρ+n

(1 + (2kr))νρ

∼ ∥Kµ,ν(|z − w|) : Lρ(Rn)∥ρ.
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Finally, we shall have for every z ∈ R
n,

|Tµ,νf(z)| ≤ C1∥f : Lρ(Rn)∥ρ/ρ∥Kµ,ν(| · |) : Lρ(Rn)∥ρ/ρ

×
(∫

Rn

Kµ,ν(|z − w|)τ |f(w)|ρd(y)
)1/τ

≤ C1∥f : Lρ(Rn)∥ρτ/ρ∥Kµ,ν(| · |) : Lρ(Rn)∥ρτ/ρ

×
∫
Rn

Kµ,ν(|z − w|)ρ|f(w)|ρdw

≤ C1∥Kµ,ν(|z − w|) : Lρ(Rn)∥ρ+ρτ/ρ.∥f : Lρ(Rn)∥(ρ+ρτ/ρ)/τ

≤ C1∥Kµ,ν(|z − w|) : Lρ(Rn)∥∥f : Lρ(Rn)∥.

To estimate the norm of the operator Tµ,νf in the context provided, we have derived a series
of inequalities using Hölder’s inequality. Now, let’s include the estimation of the norm of Tµ,νf in
the derived results.

First, we recall the definition of the norm of an operator:

∥Tµ,νf∥ = sup
∥f∥ρ ̸=0

∥Tµ,νf∥ρ
∥f∥ρ

,

where ∥f∥ρ is the norm of f in the Lρ space and ∥Tµ,νf∥ρ is the norm of Tµ,νf in the Lρ space.

From the derived inequalities, we have:

|Tµ,νf(z)| ≤ C1∥Kµ,ν(|z − w|) : Lρ(Rn)∥∥f : Lρ(Rn)∥.

So, we can write:

∥Tµ,νf∥ρ ≤ C1∥Kµ,ν(|z − w|) : Lρ(Rn)∥∥f : Lρ(Rn)∥.

Then, we need to estimate ∥Kµ,ν(|z − w|) : Lρ(Rn)∥. From the previous derivation, we have:∫
Rn

Kµ,ν(|z − w|)ρdw ≤ C1∥Kµ,ν(|z − w|) : Lρ(Rn)∥ρ.

Hence, we can express:

∥Kµ,ν(|z − w|) : Lρ(Rn)∥ ≤ C2

(∫
Rn

Kµ,ν(|z − w|)ρdw
)1/ρ

.

Substituting this into our inequality for |Tµ,νf(z)|, we get:

∥Tµ,νf∥ρ ≤ C1C2

(∫
Rn

Kµ,ν(|z − w|)ρdw
)1/ρ

∥f : Lρ(Rn)∥.

Finally, by the definition of the norm of an operator, we have:

∥Tµ,νf∥ ≤ C1C2

(∫
Rn

Kµ,ν(|z − w|)ρdw
)1/ρ

.

Thus, the norm of the operator Tµ,νf can be estimated by the expression involvingKµ,ν and its Lρ

norm.
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4.2 Bessel-Riesz on Lebesgue spaces with measure dν(w)

The Bessel-Riesz operator is a generalization of Jones’s book [8], and it specifically illustrates
Young’s inequality on weighted function spaces for convolutions. In this section, we will discuss
the impact of the Bessel-Riesz kernel on arbitrary doubling measures.

4.2.1 The kernel

Lets evaluate Bessel-Riesz on Rn using weighted measure, ν(B(a, r)) ∼ rn is defined as,

Tµ,νf(z) =

∫
Rn

Kµ,ν(|z − w|)f(w)dν(w), z ∈ R
n, (2)

Kµ,ν is referred to as the Bessel-Riesz kernel. In this case, Kµ,ν(| · |) can be seen as a multiple of
Jν and Kµ, which are referred to as the Bessel kernel and the Riesz kernel, respectively. When
W is a scalar operator, Kurata et al. [10] have demonstrated that W . Tµ,ν is bounded on general-
ized Morrey spaces. Next, we will discuss how Tµ,ν is bounded on Lebesgue spaces and observe
how Kµ,ν affects the boundedness of Tµ,ν . For applications of the operators above in a situation
involving Euclidean spaces [10].

4.2.2 Bessel-Riesz kernel belongs to some Lebesgue spaces

We shall now demonstrate that the Bessel-Riesz kernel belongs to some Lebesgue spaces. If
ν(B(a, r)) ∼ rn, then we start with the following:

Lemma 4.1. If Kµ,ν : (0,∞) → (0,∞) with,

Kµ,ν(|w|) =
|w|µ−n

(1 + |w|)ν
, 0 < ν < µ, ν > 0,

and ν(B(a, r)) ∼ rn, then ∥Kµ,ν : L1(ν)∥ < ∞.

Proof. For every R > 0, we have,∫
Rn

Kµ,ν(|w|)dν(w) =
∫
|w|<R

Kµ,ν(|w|)dν(w) +
∫
|w|≥R

Kµ,ν(|w|)dν(w). (3)

By simplifying, ∫
|w|<R

Kµ,ν(|w|)dν(w) =
−1∑

k=−∞

∫
2kr≤|w|<2k+1r

Kµ,ν(|w|)dν(w)

≤
−1∑

k=−∞

∫
2kr≤|w|<2k+1r

|w|µ−ndν(w)

∼
−1∑

k=−∞

(2kr)µ−n

∫
|w|<2k+1r

dν(w)
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≤ C

−1∑
k=−∞

(2kr)µ−n+n

≤ C

−1∑
k=−∞

(2kr)µ ∼ Crµ < ∞.

On the other hand,∫
|z−w|≥R

Kµ,ν(|w|)dν(w) =
∞∑
k=0

∫
2kr≤|w|<2k+1r

Kµ,ν(|w|)dν(w)

≤
∞∑
k=0

C

∫
2kr≤|w|<2k+1r

|w|µ−n−νdν(w)

≤
∞∑
k=0

(2kr)µ−ν

∼ CRµ−ν < ∞.

Equation (3) implies, ∫
Rn

Kµ,ν(|w|)dν(w) = C(rµ + rµ−ν). (4)

For every R > 0, especially, for R = 1, we have,

∥Kµ,ν : L1(ν)∥ =

∫
Rn

Kµ,ν(|w|)dν(w) < ∞ ⇒ K ∈ L1(ν).

For 1 ≤ ρ < ∞, we define Kµ,ν ∈ Lρ(ν), if and only if,

∥Kµ,ν : Lρ(ν)∥ =

(∫
Rn

|Kµ,ν(|w|)|ρdν(x)
)1/ρ

< ∞.

It is clear from the definition above that,

∥Kµ,ν : Lρ(ν)∥ < ∞ ⇔ 1 ≤ n

n+ ν − µ
< ρ <

n

n− µ
.

Additionally, we have the following:

Theorem 4.3. If for 1 ≤ ρ < ∞, we defineKµ,ν ∈ Lρ(ν), then for every r > 0 and ν ≤ µ,

∥Kµ,ν : Lρ(ν)∥ρ ∼
∑
k∈Z

(2kr)(µ−n)ρ+n

(2kr)νρ
, 1 ≤ n

n+ ν − µ
< ρ <

n

n− µ
. (5)

545



S. Mehmood et al. Malaysian J. Math. Sci. 19(2): 537–552(2025) 537 - 552

Proof. For every r > 0,∫
Rn

|Kµ,ν(|z|)|ρ dν(z) =
∫
|z|≥0

|Kµ,ν(|z|)|ρ dν(z)

=
∑
k∈Z

∫
2kr≤|z|<2k+1r

|z|(µ−n)ρ

(1 + |z|)νρ
dν(z)

∼
∑
k∈Z

(2kr)(µ−n)ρ

(1 + 2kr)νρ

∫
2kr≤|z|<2k+1r

dν(z)

∼
∑
k∈Z

(2kr)(µ−n)ρ+n

(1 + 2kr)νρ
.

5 Boundedness of Tµ,ν by Using Minkowski’s Inequality

Given Minkowski’s discrepancy (see [5], p. 271):

Theorem 5.1. There exists a positive constant C such that for all f ∈ L1(ν), Kµ,ν ∈ Lρ(ν), and ν ≤ µ:

∥Tµ,νf : Lρ(ν)∥ ≤ C∥Kµ,ν(| · |) : Lρ(ν)∥ · ∥f : L1(ν)∥, 1 ≤ n

n+ ν − µ
< ρ <

n

n− µ
.

Proof. It is easy to see that,

∥Tµ,νf : Lρ(ν)∥ =

(∫
Rn

|Tµ,νf(z)|ρdν(z)
)1/ρ

=

(∫
Rn

∣∣∣∣∫
Rn

Kµ,ν(|z − w|)|f(w)dν(w)
∣∣∣∣ρdν(z))1/ρ

(by using Fubini’s theorem)

=

∫
Rn

(∫
Rn

|Kµ,ν(|z − w|)|f(w)|ρdν(z)
)1/ρ

dν(w)

=

∫
Rn

(∫
Rn

|Kµ,ν(|z − w|)|ρdν(z)
)1/ρ

|f(w)|dν(w)

≤ C∥Kµ,ν(| · |) : Lρ(ν)∥.∥f : L1(ν)∥.

We will also use Young’s inequality [8] in one of our results.

Theorem 5.2. Consider the following 1

σ
=

1

ρ
+

1

τ
−1, 1 ≤ n

n+ ν − µ
< ρ <

n

n− µ
. If for some C1 > 0,

ν(B(a, r)) ≤ C1R
n, f ∈ Lρ(ν), and Kµ,ν ∈ Lτ (ν), then there exist C2 > 0 such that,

∥Tµ,νf : Lσ(ν)∥ ≤ C2∥Kµ,ν(| · |) : Lτ (ν)∥.∥f : Lρ(ν)∥.

Proof. Here, we consider the following,
1

σ
=

1

ρ
+

1

τ
− 1,
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By Hölder inequality, then for every x ∈ R
n, we will have,

|Tµ,νf(z)| ≤
∫
Rn

|f(w)|ρ/σKµ,ν(|z − w|)τ/σ|f(w)|1−ρ/σKµ,ν(|z − w|)1−τ/σdν(w)

≤
(∫

Rn

Kµ,ν(|z − w|)τ |f(w)|ρdν(w)
)1/σ (∫

Rn

|f(w)|(1−ρ/σ)τ́dν(w)

)1/τ́

×
(∫

Rn

Kµ,ν(|z − w|)(1−τ/σ)ρ́dν(w)

)1/ρ́

≤
(∫

Rn

Kµ,ν(|z − w|)τ |f(w)|ρdν(w)
)1/σ (∫

Rn

|f(w)|ρdν(w)
)1/τ́

×
(∫

Rn

Kµ,ν(|z − w|)τdν(w)
)1/ρ́

.

On the other hand, we also have,∫
Rn

Kµ,ν(|z − w|)τdν(w) =
∑
k∈Z

(2kr)(µ−n)τ

(1 + (2kr))ντ

∫
2kr≤|z−w|<2k+1r

dν(w).

Since ν(B(a, r)) ≤ C1R
n, then,∫

Rn

Kµ,ν(|z − w|)τdν(w) ≤ C1

∑
k∈Z

(2kr)(µ−n)τ+n

(1 + (2kr))ντ
∼ ∥Kµ,ν(|z − w|)| : Lτ (ν)∥τ .

Finally, for every x ∈ R
n, we will have,

|Tµ,νf(z)| ≤ C1∥f : Lρ(ν)∥ρ/τ́∥Kµ,ν(| · |) : Lτ (ν)∥τ/ρ́
(∫

Rn

Kµ,ν(|z − w|)τ |f(w)|ρdν(w)
)1/σ

, or

|Tµ,νf(z)|σ ≤ C1∥f : Lρ(ν)∥σρ/τ́∥Kµ,ν(| · |) : Lτ (ν)∥στ/ρ́
∫
Rn

Kµ,ν(|z − w|)τ |f(w)|ρdν(w).

The right side of our inequality will change if we merge both sides and consider Minköwski’s
inequality,∫

Rn

(∫
Rn

Kµ,ν(|z − w|)τ |f(w)|ρdν(w)
)
dz =

∫
Rn

(∫
Rn

Kµ,ν(|z − w|)τdz
)
|f(w)|ρdν(w)

∼ ∥Kµ,ν(| · |) : Lτ (ν)∥τ∥f : Lρ(ν)∥ρ.

Therefore, our final inequality is,

∥Tµ,νf : Lσ(ν)∥σ ≤ C2∥Kµ,ν(| · |) : Lτ (ν)∥τ+στ/ρ́.∥f : Lρ(ν)∥ρ+σρ/τ́ , or
∥Tµ,νf : Lσ(ν)∥ ≤ ∥C2Kµ,ν(| · |) : Lτ (ν)∥∥f : Lρ(ν)∥.

Similarly, we have,

Corollary 5.1. Suppose we have 1

σ
=

1

ρ
+

1

τ
− 1, 1 ≤ n

n+ ν − µ
< ρ <

n

n− µ
. Let τ = 1, so that

σ = ρ (Special case of Young’s inequality). If for some C1 > 0, ν(B(a, r)) ≤ C1R
n, f ∈ Lρ(ν), and

Kµ,ν ∈ L1(ν), then there exist C2 > 0 such that,

∥Tµ,νf∥Lσ(ν) ≤ C2∥Kµ,ν(| · |)∥L1(ν)∥f∥Lρ(ν).
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5.1 Results in Campanato spaces

5.1.1 Characteristics of Campanato spaces

Campanato spaces, denoted as Lρ,ρ(Ω), are instrumental in analyzing functions with con-
trolled oscillations. For 1 ≤ ρ < ∞ and 0 < ρ < n, the space Lρ,ρ(Ω) comprises functions f
satisfying the finite norm:

[f ]ρρ,ρ = sup
0<r<diam(Ω), z0∈Ω

1

rρ

∫
Br(z0)∩Ω

|f(w)− fr,z0 |ρ dw,

where fr,z0 =
1

|Br(z0) ∩ Ω|
∫
Br(z0)∩Ω

f(w)dw.

The Bessel-Riesz operator, denoted by Tµ,ν , can also be defined on the Campanato spaces.
Campanato spaces are function spaces that generalize the classical Lebesgue spaces and Sobolev
spaces. Let Ω be an open subset of Rn and ν be a positive Borel measure on Ω. The Campanato
space Cs

ρ,τ (Ω, ν) consists of all measurable functions f on Ω such that the norm,

∥f∥Cs
ρ,τ (Ω,ν) =

(∫
Ω

(∫
Ω

|f(z)− f(w)|ρ

|z − w|n+sσ
dν(w)

)τ/p

dν(w)

)1/τ

, (6)

is finite, where s > 0, 0 < ρ < ∞, and 0 < τ ≤ ∞. The parameter s controls the smoothness of the
functions in the Campanato space.

To define the Bessel-Riesz operator on Campanato spaces, we consider the Bessel-Riesz kernel
Kµ,ν as before. If Kµ,ν satisfies certain conditions and the measure ν is doubling, then Kµ,ν be-
longs to the Campanato space Cs

ρ,τ (R
n, ν). The boundedness of the Bessel-Riesz operator Tµ,ν on

Campanato spaces can be established under appropriate conditions. For example, ifKµ,ν belongs
to Cs

ρ,τ (R
n, ν), then Tµ,ν is a bounded operator from Cs

ρ,τ (R
n, ν) to itself. The precise conditions

for the boundedness of Tµ,ν on Campanato spaces depend on the specific properties of the Bessel-
Riesz kernel and themeasure ν. These conditions may involve the parameters µ, ν, s, ρ, and τ , and
they are typically established through techniques such as Calderón-Zygmund theory or harmonic
analysis.

Here is a sketch of the derivation of the boundedness of the Bessel-Riesz operator Tµ,ν on
the Campanato space Cs

ρ,τ (R
n, ν) under the conditions mentioned Let f ∈ Cs

ρ,τ (R
n, ν). Then by

Minkowski’s integral inequality,

∥Tµ,νf∥Cs
ρ,τ

=

∥∥∥∥∫
Rn

Kµ,ν(z − w)f(w)dν(w)

∥∥∥∥
Cs

ρ,τ

≤
∫
Rn

∥Kµ,ν(z − ·)f(·)∥Cs
ρ,τ

dν(w).

SinceKµ,ν ∈ Cs
ρ,τ (R

n, ν), the convolution kernelKµ,ν(z − ·) defines a bounded linear operator on
Cs

ρ,τ (R
n, ν). Applying this and Minkowski’s inequality again yields,

∥Tµ,νf∥Cs
ρ,τ

≤ C

∫
Rn

∥f(·)∥Cs
ρ,τ

dν(w) = C∥f∥Cs
ρ,τ

ν(Rn) < ∞,

whereC depends on theCs
ρ,τ normofKµ,ν . This shows Tµ,ν is bounded onCs

ρ,τ (R
n, ν) as required.

The details involve precise estimation of the Campanato seminorms.
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Here is a derivation of another boundedness result for the Bessel-Riesz operator Tµ,ν on Cam-
panato spaces:

Theorem 5.3. If Kµ,ν ∈ Cs′

ρ,τ (R
n, ν) for some s′ > s, then Tµ,ν extends to a bounded operator from

Cs
ρ,τ (R

n, ν) to Lτ (Rn, ν).

Proof. Let f ∈ Cs
ρ,τ (R

n, ν). By the definition of the Campanato space norm, for any z ∈ R
n, we

have,

|Tµ,νf(z)| ≤
∫
Rn

|Kµ,ν(z − w)||f(w)| dν(w) (7)

= (Kµ,ν(z − ·) ∗ |f |) (z). (8)

Applying the convolution inequality and the embedding Cs
ρ,τ ↪→ Cs−ϵ

ρ,τ for ϵ > 0, we get,

|Tµ,νf(z)| ≤ ∥Kµ,ν(z − ·)∥
Cs′−ϵ

ρ,τ
∥f∥Cs−ϵ

ρ,τ

≤ C∥f∥Cs
ρ,τ

,

where C depends on Kµ,ν but is independent of f . Hence, Tµ,νf ∈ Lτ (Rn, ν) with the desired
bound. This argument leverages the additional smoothness of Kµ,ν to control the operator norm
to Lτ .

5.1.2 Additional boundedness results for the Bessel-Riesz operator on Campanato spaces

1. Boundedness on Campanato spaces:
Suppose,

Kµ,ν ∈ Cs
ρ,τ (R

n, ν),

where Ω is an open subset of Rn and ν is a doubling measure on Ω. If,

s >
n

ρ
, 0 < ρ, τ ≤ ∞,

then the Bessel-Riesz operator,

Tµ,ν ,

is a bounded operator from,

Cs
ρ,τ (Ω, ν),

to itself.

2. Boundedness on weighted Campanato spaces:
Consider the Campanato space,

Cs
ρ,τ (Ω, ω),

where Ω is an open subset of Rn, ω(x) is a weight function, and,

0 < ρ, τ ≤ ∞.

549



S. Mehmood et al. Malaysian J. Math. Sci. 19(2): 537–552(2025) 537 - 552

The Bessel-Riesz operator,

Tµ,ν ,

is a bounded operator from the weighted Campanato space,

Cs
ρ,τ (R

n, ω),

to itself if ω(x)meets certain growth conditions and,

Kµ,ν ∈ Cs
ρ,τ (R

n, ω).

3. Boundedness on Triebel-Lizorkin spaces:
Triebel-Lizorkin spaces generalize the Lebesgue spaces. If,

Kµ,ν ∈ F s
ρ,τ (R

n),

where,

0 < ρ, τ ≤ ∞ and s >
n

ρ
,

then the Bessel-Riesz operator,

Tµ,ν ,

is a bounded operator from,

F s
ρ,τ (Ω),

to itself.

These boundedness results highlight the compatibility of the Bessel-Riesz operator with various
function spaces incorporating smoothness and decay properties. This allows for the study of con-
volutions with the Bessel-Riesz kernel in areas like signal processing, harmonic analysis, and par-
tial differential equations.

6 Conclusions

Summarizing the key results on Bessel-Riesz operators and relating them to classical Lebesgue
space theory, This work builds upon the foundations of classical potential theory and integral op-
erator analysis on Lebesgue spaces. Jones’ monograph established fundamental Lρ boundedness
results for Bessel-Riesz potentials using techniques like convolution inequalities. Theorems 5.2
and 5.1 took these results from classical Lρ potential theory and applied them to arbitrary dou-
bling measures, which is a more general setting. This level of abstraction accommodates a wider
class of underlying spaces beyond the original Lebesgue space context. Theorem 5.1 andCorollary
4.3 showed the link to the classical L1 result. This shows that the new theory naturally explains
previous results. The research has also encompassed variousmeasures, as documented in [11, 12].

Furthermore, the study has expanded its focus by investigating the boundedness of Bessel-
Riesz operators on generalized function spaces like Campanato was then systematically investi-
gated. TheCampanato space theory reduces to the originalLρ theory frameworkwhen specialized

550



S. Mehmood et al. Malaysian J. Math. Sci. 19(2): 537–552(2025) 537 - 552

to Lebesgue spaces. Overall, this work advanced the mathematical understanding of Bessel-Riesz
potentials by rigorously establishing their mapping properties on a spectrum of function spaces,
moving from classical Lebesgue to more abstract contexts. General theorems were proven, and
examples illuminated the relationship to the prior theory. Areas of future work include realizing
applications suggested by these generalized boundedness results and conducting deeper investi-
gations into particular measures and special cases. Continued progress in this area will yield new
insights into integral operators and their role across analysis.
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